1,800 research outputs found

    Novel electronic device to quantify the cyclic fatigue resistance of endodontic reciprocating files after using and sterilization

    Get PDF
    Background: The aim of this study was to analyze the effects of the time of use (TU) and sterilization cycles (SC) of endodontic reciprocating files on cyclic fatigue resistance. Methods: One-hundred-and-twenty (120) Procodile NiTi endodontic reciprocating instruments were selected at random and distributed into the following study groups: A: 0 sterilization cycles/0s time of use (n = 10); B: 0/60 (n = 10); C: 0/120 (n = 10); D: 1/0 (n = 10); E: 1/60 (n = 10); F: 1/120 (n = 10); G: 5/0 (n = 10); H: 5/60 (n = 10); I: 5/120 (n = 10); J: 10/0 (n = 10); K: 10/60 (n = 10); and L: 10/120 (n = 10). A dynamic cyclic fatigue device was designed using computer-aided design/computer-aided engineering (CAD/CAE) technology and created with a 3D printer to simulate the pecking motion performed by the clinician. Failure of the endodontic rotary instrument was detected by a light-emitting diode-light-dependent resistor (LED-LDR) system controlled by an Arduino driver complex and management software. The results were analyzed using the ANOVA test. Results: All pairwise comparisons presented statistically significant differences between the time to failure, number of cycles to failure and number of cycles of in-and-out movement for the time of use study groups (p 0.05). Conclusions: The time of use of NiTi endodontic reciprocating files negatively affects dynamic cyclic fatigue resistance. Dynamic cyclic resistance is not affected by the number of sterilization cycles

    Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3d intraoral laser scanner

    Get PDF
    To compare the reliability and accuracy of direct and indirect dental measurements derived from two types of 3D virtual models: generated by intraoral laser scanning (ILS) and segmented cone beam computed tomography (CBCT), comparing these with a 2D digital model. One hundred patients were selected. All patients? records included initial plaster models, an intraoral scan and a CBCT. Patients´ dental arches were scanned with the iTero® intraoral scanner while the CBCTs were segmented to create three-dimensional models. To obtain 2D digital models, plaster models were scanned using a conventional 2D scanner. When digital models had been obtained using these three methods, direct dental measurements were measured and indirect measurements were calculated. Differences between methods were assessed by means of paired t-tests and regression models. Intra and inter-observer error were analyzed using Dahlberg´s d and coefficients of variation. Intraobserver and interobserver error for the ILS model was less than 0.44 mm while for segmented CBCT models, the error was less than 0.97 mm. ILS models provided statistically and clinically acceptable accuracy for all dental measurements, while CBCT models showed a tendency to underestimate measurements in the lower arch, although within the limits of clinical acceptability. ILS and CBCT segmented models are both reliable and accurate for dental measurements. Integration of ILS with CBCT scans would get dental and skeletal information altogether

    Large N expansions and Painlev\'e hierarchies in the Hermitian matrix model

    Get PDF
    We present a method to characterize and compute the large N formal asymptotics of regular and critical Hermitian matrix models with general even potentials in the one-cut and two-cut cases. Our analysis is based on a method to solve continuum limits of the discrete string equation which uses the resolvent of the Lax operator of the underlying Toda hierarchy. This method also leads to an explicit formulation, in terms of coupling constants and critical parameters, of the members of the Painlev\'e I and Painlev\'e II hierarchies associated with one-cut and two-cut critical models respectively

    A case of concomitant pulmonary tuberculosis and mucormycosis in an insulin-dependent diabetic patient

    Get PDF
    Conditions, where the patient's immune system is compromised are the main risk factor for mucormycosis. Approximately 23% of the world's population is estimated to have a latent Mycobacterium tuberculosis infection and more than 10 million new cases were estimated in 2017. Pulmonary mucormycosis and tuberculosis co-infections are very rare. We present the case of a 56-year-old insulin-dependent diabetic patient with a pulmonary mucormycosis and tuberculosis co-infection. While the patient did not suffer from ketoacidosis, she had poor glycemic control. A chest X-ray and a computed tomography showed nodular and cavitary lesions in both lungs. The patient was diagnosed through a biopsy of the bronchial mucosa and an RT-PCR for M. tuberculosis from bronchoalveolar lavage. The patient was treated with the recommended 4-drug regimen for TB (i.e. isoniazid, rifampin, pyrazinamide, and ethambutol); concurrently, amphotericin B deoxycholate was administered to treat the mucormycosis infection. Thirty days after initial hospital admission the patient underwent a lobectomy on the right lung. The case described here is only the sixth case reported in the literature of concomitant pulmonary tuberculosis and mucormycosis and the third case associated with a TB and mucormycosis co-infection involving an uncontrolled DM patient to survive

    A Fuzzy Rule-Based System to Predict Energy Consumption of Genetic Programming Algorithms

    Get PDF
    In recent years, the energy-awareness has become one of the most interesting areas in our environmentally conscious society. Algorithm designers have been part of this, particularly when dealing with networked devices and, mainly, when handheld ones are involved. Although studies in this area has increased, not many of them have focused on Evolutionary Algorithms. To the best of our knowledge, few attempts have been performed before for modeling their energy consumption considering different execution devices. In this work, we propose a fuzzy rulebased system to predict energy comsumption of a kind of Evolutionary Algorithm, Genetic Prohramming, given the device in wich it will be executed, its main parameters, and a measurement of the difficulty of the problem addressed. Experimental results performed show that the proposed model can predict energy consumption with very low error values.We acknowledge support from Spanish Ministry of Economy and Competitiveness under projects TIN2014-56494-C4-[1,2,3]-P and TIN2017-85727-C4- [2,4]-P, Regional Government of Extremadura, Department of Commerce and Economy, conceded by the European Regional Development Fund, a way to build Europe, under the project IB16035, and Junta de Extremadura FEDER, projects GR15068 and GR15130

    Copper: Synthesis Techniques in Nanoscale and Powerful Application as an Antimicrobial Agent

    Get PDF
    Nanosized metal particles show specific physical and chemical properties that allow the creation of new composites materials, which are important for multiple applications in biology and medicine such as infections control. Metal nanoparticles, mainly copper, exhibit excellent inhibitory effect on Gram-positive and Gram-negative bacteria; therefore the exploration about the efficient, economical, and friendly environmental technics to synthesize inorganic nanoparticles is imperative. In this work a brief overview of the several methods is made including the comparison of the methods, mainly between sonochemical, microwave, and chemical routes. It allows determining the optimal parameters and technical conditions to synthesize copper nanoparticles with physical and chemical properties suitable for the oral bacterial inhibition

    Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome

    Get PDF
    BACKGROUND: The use of next-generation sequencing enables a rapid analysis of many genes associated with sudden cardiac death in diseases like Brugada Syndrome. Genetic variation is identified and associated with 30-35% of cases of Brugada Syndrome, with nearly 20-25% attributable to variants in SCN5A, meaning many cases remain undiagnosed genetically. To evaluate the role of genetic variants in arrhythmogenic diseases and the utility of next-generation sequencing, we applied this technology to resequence 28 main genes associated with arrhythmogenic disorders. MATERIALS AND METHODS: A cohort of 45 clinically diagnosed Brugada Syndrome patients classified as SCN5A-negative was analyzed using next generation sequencing. Twenty-eight genes were resequenced: AKAP9, ANK2, CACNA1C, CACNB2, CASQ2, CAV3, DSC2, DSG2, DSP, GPD1L, HCN4, JUP, KCNE1, KCNE2, KCNE3, KCNH2, KCNJ2, KCNJ5, KCNQ1, NOS1AP, PKP2, RYR2, SCN1B, SCN3B, SCN4B, SCN5A, SNTA1, and TMEM43. A total of 85 clinically evaluated relatives were also genetically analyzed to ascertain familial segregation. RESULTS AND DISCUSSION: Twenty-two patients carried 30 rare genetic variants in 12 genes, only 4 of which were previously associated with Brugada Syndrome. Neither insertion/deletion nor copy number variation were detected. We identified genetic variants in novel candidate genes potentially associated to Brugada Syndrome. These include: 4 genetic variations in AKAP9 including a de novo genetic variation in 3 positive cases; 5 genetic variations in ANK2 detected in 4 cases; variations in KCNJ2 together with CASQ2 in 1 case; genetic variations in RYR2, including a de novo genetic variation and desmosomal proteins encoding genes including DSG2, DSP and JUP, detected in 3 of the cases. Larger gene panels or whole exome sequencing should be considered to identify novel genes associated to Brugada Syndrome. However, application of approaches such as whole exome sequencing would difficult the interpretation for clinical purposes due to the large amount of data generated. The identification of these genetic variants opens new perspectives on the implications of genetic background in the arrhythmogenic substrate for research purposes. CONCLUSIONS: As a paradigm for other arrhythmogenic diseases and for unexplained sudden death, our data show that clinical genetic diagnosis is justified in a family perspective for confirmation of genetic causality. In the era of personalized medicine using high-throughput tools, clinical decision-making is increasingly complex

    The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory

    Get PDF
    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne telesocope in June 2009 for almost six days over the Arctic Circle. As a polarimeter IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mAA. IMaX uses the high Zeeman sensitive line of Fe I at 5250.2 AA and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15-0.18 arcsec range over a 50x50 arcsec FOV. Time cadences vary between ten and 33 seconds, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are four Gauss for longitudinal fields and 80 Gauss for transverse fields per wavelength sample. The LOS velocities are estimated with statistical errors of the order of 5-40 m/s. The design, calibration and integration phases of the instrument, together with the implemented data reduction scheme are described in some detail.Comment: 17 figure

    Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach

    Get PDF
    Despite the promising properties of tin-based halide perovskites, one clear limitation is the fast Sn+2 oxidation. Consequently, the preparation of long-lasting devices remains challenging. Here, we report a chemical engineering approach, based on adding Dipropylammonium iodide (DipI) together with a well-known reducing agent, sodium borohydride (NaBH4), aimed at preventing the premature degradation of Sn-HPs. This strategy allows for obtaining efficiencies (PCE) above 10% with enhanced stability. The initial PCE remained unchanged upon 5 h in air (60% RH) at maximum-power-point (MPP). Remarkably, 96% of the initial PCE was kept after 1,300 h at MPP in N2. To the best of our knowledge, these are the highest reported values for Sn-based solar cells. Our findings demonstrate a beneficial synergistic effect when additives are incorporated, highlight the important role of iodide in the performance upon light soaking, and, ultimately, unveil the relevance of controlling the halide chemistry for future improvement of Sn-based perovskite devices
    corecore