144 research outputs found
Chemical and dynamical processes in the mesospheric emissive layer. First results of stereoscopic observations
[1] The mesospheric emissive layer is an efficient tracer of the dynamical processes propagating in the atmosphere at that level. CCD images in the near infrared taken from the ground at slant angles often reveal the existence of wavy fields. A series of such images has been transformed, using matrix operations, producing a downward satellite-type view that covers a circular area of radius ∼1000 km at the altitude of the layer. The Fourier characteristics of the wave system are measured using a Morlet-type wavelet generator function with horizontal wavelengths of mostly ∼20–40 km and 100–150 km and temporal periods of ∼15–30 min. An oxygen-hydrogen model is used to evaluate the response of the emissive layer to a progressive density wave. The altitude of the layer is modulated with an amplitude of ∼0.8–1.8 km when a density wave propagates vertically. The layer thickness is slightly modulated and is equal to ∼7 km. Stereoscopic pairs of photographs taken simultaneously on 8–9 September 2000 at the Château-Renard and Pic du Midi observatories are used to obtain surface maps of the emission layer barycenter altitude. A stereocorrelation method suitable for low contrast objects without discrete contours is employed. Preliminary results for areas ∼50 × 50 km2 are presented. The surface maps of the layer barycenter altitude depict the existence of waves. They show the same wavy structure and compare favorably with the maps showing the emission intensity
The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons
We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the
basal plane of graphite using thermal desorption spectroscopy. Desorption
kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer
coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV,
respectively. Benzene and naphthalene follow simple first order desorption
kinetics while coronene and ovalene exhibit fractional order kinetics owing to
the stability of 2-D adsorbate islands up to the desorption temperature.
Pre-exponential frequency factors are found to be in the range
- as obtained from both Falconer--Madix (isothermal
desorption) analysis and Antoine's fit to vapour pressure data. The resulting
binding energy per carbon atom of the PAH is 5 meV and can be identified
with the interlayer cohesive energy of graphite. The resulting cleavage energy
of graphite is ~meV/atom which is considerably larger than previously
reported experimental values.Comment: 8 pages, 4 figures, 2 table
A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes
Copyright @ 2012, American Society for Microbiology.Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E
Prognostic value of fractional flow reserve: Linking physiologic severity to clinical outcomes
BACKGROUND: Fractional flow reserve (FFR) has become an established tool for guiding treatment, but its graded relationship to clinical outcomes as modulated by medical therapy versus revascularization remains unclear.OBJECTIVES: The study hypothesized that FFR displays a continuous relationship between its numeric value and prognosis, such that lower FFR values confer a higher risk and therefore receive larger absolute benefits from revascularization.METHODS: Meta-analysis of study- and patient-level data investigated prognosis after FFR measurement. An interaction term between FFR and revascularization status allowed for an outcomes-based threshold.RESULTS: A total of 9,173 (study-level) and 6,961 (patient-level) lesions were included with a median follow-up of 16 and 14 months, respectively. Clinical events increased as FFR decreased, and revascularization showed larger net benefit for lower baseline FFR values. Outcomes-derived FFR thresholds generally occurred around the range 0.75 to 0.80, although limited due to confounding by indication. FFR measured immediately after stenting also showed an inverse relationship with prognosis (hazard ratio: 0.86, 95% confidence interval: 0.80 to 0.93; p < 0.001). An FFR-assisted strategy led to revascularization roughly half as often as an anatomy-based strategy, but with 20% fewer adverse events and 10% better angina relief.CONCLUSIONS: FFR demonstrates a continuous and independent relationship with subsequent outcomes, modulated by medical therapy versus revascularization. Lesions with lower FFR values receive larger absolute benefits from revascularization. Measurement of FFR immediately after stenting also shows an inverse gradient of risk, likely from residual diffuse disease. An FFR-guided revascularization strategy significantly reduces events and increases freedom from angina with fewer procedures than an anatomy-based strategy
Pediatric Measles Vaccine Expressing a Dengue Antigen Induces Durable Serotype-specific Neutralizing Antibodies to Dengue Virus
Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles–dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist
Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation
According to their distinct biological functions, membrane-active peptides are generally classified as antimicrobial (AMP), cell-penetrating (CPP), or fusion peptides (FP). The former two classes are known to have some structural and physicochemical similarities, but fusogenic peptides tend to have rather different features and sequences. Nevertheless, we found that many CPPs and some AMPs exhibit a pronounced fusogenic activity, as measured by a lipid mixing assay with vesicles composed of typical eukaryotic lipids. Compared to the HIV fusion peptide (FP23) as a representative standard, all designer-made peptides showed much higher lipid-mixing activities (MSI-103, MAP, transportan, penetratin, Pep1). Native sequences, on the other hand, were less fusogenic (magainin 2, PGLa, gramicidin S), and pre-aggregated ones were inactive (alamethicin, SAP). The peptide structures were characterized by circular dichroism before and after interacting with the lipid vesicles. A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here. At the same time, the CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other. These observations suggest that lipid vesicle fusion can simply be driven by the energy released upon membrane binding, peptide folding, and possibly further aggregation. This comparative study of AMPs, CPPs, and FPs emphasizes the multifunctional aspects of membrane-active peptides, and it suggests that the origin of a peptide (native sequence or designer-made) may be more relevant to define its functional range than any given name
Effects of calorie restriction on life span of microorganisms
Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism
- …