205 research outputs found

    Role of macrophage migration inhibitory factor (MIF) in allergic and endotoxin-induced airway inflammation in mice.

    Get PDF
    Macrophage migration inhibitory factor (MIF) has recently been forwarded as a critical regulator of inflammatory conditions, and it has been hypothesized that MIF may have a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). Hence, we examined effects of MIF immunoneutralization on the development of allergen-induced eosinophilic inflammation as well as on lipopolysaccharide (LPS)-induced neutrophilic inflammation in lungs of mice. Anti-MIF serum validated with respect to MIF neutralizing capacity or normal rabbit serum (NRS) was administered i.p. repeatedly during allergen aerosol exposure of ovalbumin (OVA)-immunized mice in an established model of allergic asthma, or once before instillation of a minimal dose of LPS into the airways of mice, a tentative model of COPD. Anti-MIF treatment did not affect the induced lung tissue eosinophilia or the cellular composition of bronchoalveolar lavage fluid (BALF) in the asthma model. Likewise, anti-MIF treatment did not affect the LPS-induced neutrophilia in lung tissue, BALF, or blood, nor did it reduce BALF levels of tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-1alpha (MIP-1alpha). The present data suggest that MIF is not critically important for allergen-induced eosinophilic, and LPS-induced neutrophilic responses in lungs of mice. These findings do not support a role of MIF inhibition in the treatment of inflammatory respiratory diseases

    Direct Substrate Delivery into Mitochondrial-Fission Deficient Pancreatic Islets Rescues Insulin Secretion

    Get PDF
    In pancreatic beta cells, mitochondrial bioenergetics control glucose-stimulated insulin secretion (GSIS). Mitochondrial dynamics are generally associated with quality control, maintaining the functionality of bioenergetics. By acute pharmacological inhibition of mitochondrial fission protein Drp1, we here demonstrate that mitochondrial fission is necessary for GSIS in mouse and human islets. We confirm that genetic silencing of Drp1 increases mitochondrial proton leak in MIN6 cells. However, our comprehensive analysis of pancreatic islet bioenergetics reveals that Drp1 does not control insulin secretion via its effect on proton leak but instead via modulation of glucose-fuelled respiration. Notably, pyruvate fully rescues the impaired insulin secretion of fission-deficient beta cells, demonstrating that defective mitochondrial dynamics solely impact substrate supply upstream of oxidative phosphorylation. The present findings provide novel insights in how mitochondrial dysfunction may cause pancreatic beta cell failure. In addition, the results will stimulate new thinking in the intersecting fields of mitochondrial dynamics and bioenergetics, as treatment of defective dynamics in mitochondrial diseases appears to be possible by improving metabolism upstream of mitochondria

    Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes

    Get PDF
    Journal ArticleThis is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version is available in Diabetes, May 2015, vol. 64, no. 5 pp. 1682-1687 in print and online at http://diabetes.diabetesjournals.org/content/64/5/1682.abstractThe Diabetes Virus Detection study (DiViD) is the first to examine fresh pancreatic tissue at the diagnosis of type 1 diabetes for the presence of viruses. Minimal pancreatic tail resection was performed 3-9 weeks after onset of type 1 diabetes in six adult patients (age 24-35 years). The presence of enteroviral capsid protein 1 (VP1) and the expression of class I HLA were investigated by immunohistochemistry. Enterovirus RNA was analyzed from isolated pancreatic islets and from fresh-frozen whole pancreatic tissue using PCR and sequencing. Nondiabetic organ donors served as controls. VP1 was detected in the islets of all type 1 diabetic patients (two of nine controls). Hyperexpression of class I HLA molecules was found in the islets of all patients (one of nine controls). Enterovirus-specific RNA sequences were detected in four of six patients (zero of six controls). The results were confirmed in various laboratories. Only 1.7% of the islets contained VP1(+) cells, and the amount of enterovirus RNA was low. The results provide evidence for the presence of enterovirus in pancreatic islets of type 1 diabetic patients, which is consistent with the possibility that a low-grade enteroviral infection in the pancreatic islets contributes to disease progression in humans.Academy of FinlandSouth-Eastern Norway Regional HealthAuthorityNovo Nordisk FoundationPEVNET (Persistent Virus Infection in Diabetes Network) Study GroupEuropean Union’s Seventh Framework ProgrammeSwedish Medical Research CouncilDiabetes Wellness FoundationJDR

    Long Term Follow-Up of the Endovascular Trans-Vessel Wall Technique for Parenchymal Access in Rabbit with Full Clinical Integration

    Get PDF
    OBJECTIVE: Endovascular techniques are providing options to surgical/percutaneous cell transplantation methods. Some cells, e.g. insulin producing cells, are not suitable for intra-luminal transplantation and for such cells, other options must be found. We have constructed a "nanocatheter" with a penetrating tip for vessel perforation, thereby creating a working channel for parenchymal access by endovascular technique. To finish the procedure safely, the distal tip is detached to provide a securing plug in the vessel wall defect. MATERIALS AND METHODS: We have performed interventions with full clinical integration in the superior mesenteric artery (SMA), the subclavian artery and the external carotid artery in rabbits. No hemorrhagic- or thromboembolic events occurred during the procedure. Stenosis formation and distal embolisation were analyzed by angiography and macroscopic inspection during autopsy at five, 30 and 80 days. All animals and implanted devices were also evaluated by micro-dissections and histochemical analysis. RESULTS: In this study we show safety data on the trans-vessel wall technique by behavioral, angiographical and histological analysis. No stenosis formation was observed at any of the follow-up time points. No animals or organs have shown any signs of distress due to the intervention. Histological examination showed no signs of hemorrhage, excellent biocompatibility with no inflammation and a very limited fibrous capsule formation around the device, comparable to titanium implants. Further, no histological changes were detected in the endothelia of the vessels subject to intervention. CONCLUSIONS: The trans-vessel wall technique can be applied for e.g. cell transplantations, local substance administration and tissue sampling with low risk for complications during the procedure and low risk for hemorrhage, stenosis development or adverse tissue reactions with an 80 days follow-up time. The benefit should be greatest in organs that are difficult or risky to reach with surgical techniques, such as the pancreas, the CNS and the heart

    Improved Vascular Engraftment and Graft Function After Inhibition of the Angiostatic Factor Thrombospondin-1 in Mouse Pancreatic Islets

    Get PDF
    OBJECTIVE—Insufficient development of a new intra-islet capillary network after transplantation may be one contributing factor to the failure of islet grafts in clinical transplantation. The present study tested the hypothesis that the angiostatic factor thrombospondin-1 (TSP-1), which is normally present in islets, restricts intra-islet vascular expansion posttransplantation

    Remodeling of extra-bronchial lung vasculature following allergic airway inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.</p> <p>Methods</p> <p>We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≤250 μm) and mid-sized (250–500 μm).</p> <p>Results</p> <p>We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.</p> <p>Conclusion</p> <p>We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 μm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.</p
    corecore