191 research outputs found

    Marine biodiversity and ecosystem function relationships: The potential for practical monitoring applications

    Get PDF
    Abstract There is an increasing demand for environmental assessments of the marine environment to include ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This review assesses the evidence for marine BEF relationships and their potential to be used in practical monitoring applications (i.e. operationalized). Five key requirements were identified for the practical application of BEF relationships: 1) a complete understanding of strength, direction and prevalence of marine BEF relationships, 2) an understanding of which biological components are influential within specific BEF relationships, 3) the biodiversity of the selected biological components can be measured easily, 4) the ecological mechanisms that are the most important for generating marine BEF relationships, i.e. identity effects or complementarity, are known and 5) the proportion of the overall functional variance is explained by biodiversity, and hence BEF relationships, has been established. Numerous positive and some negative BEF relationships were found within the literature, although many reproduced poorly the natural species richness, trophic structures or multiple functions of real ecosystems (requirement 1). Null relationships were also reported. The consistency of the positive and negative relationships was often low that compromised the ability to generalize BEF relationships and confident application of BEF within marine monitoring. Equally, some biological components and functions have received little or no investigation. Expert judgement was used to attribute biological components using spatial extent, presence and functional rate criteria (requirement 2). This approach highlighted the main biological components contributing the most to specific ecosystem functions, and that many of the particularly influential components were found to have received the least amount of research attention. The need for biodiversity to be measureable (requirement 3) is possible for most biological components although difficult within the functionally important microbes. Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that translated structural biodiversity measures into functional diversity were found to generate better BEF relationships. The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not possible to determine the overall importance of BEF relationships within the total ecosystem functioning observed. In the few studies where abiotic factors had been considered, it was clear that these modified BEF relationships and have their own direct influence on functional rate. Based on the five requirements, the information required for immediate ‘operationalization’ of BEF relationships within marine functional monitoring is lacking. However, the concept of BEF inclusion within practical monitoring applications, supported by ecological modelling, shows promise for providing surrogate indicators of functioning

    FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy

    Get PDF
    Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention

    An exposure-effect approach for evaluating ecosystem-wide risks from human activities

    Get PDF
    Ecosystem-based management (EBM) is promoted as the solution for sustainable use. An ecosystem-wide assessment methodology is therefore required. In this paper, we present an approach to assess the risk to ecosystem components from human activities common to marine and coastal ecosystems. We build on: (i) a linkage framework that describes how human activities can impact the ecosystem through pressures, and (ii) a qualitative expert judgement assessment of impact chains describing the exposure and sensitivity of ecological components to those activities. Using case study examples applied at European regional sea scale, we evaluate the risk of an adverse ecological impact from current human activities to a suite of ecological components and, once impacted, the time required for recovery to pre-impact conditions should those activities subside. Grouping impact chains by sectors, pressure type, or ecological components enabled impact risks and recovery times to be identified, supporting resource managers in their efforts to prioritize threats for management, identify most at-risk components, and generate time frames for ecosystem recovery

    Report on identification of keystone species and processes across regional seas. DEVOTES FP7 Project

    Get PDF
    WP6, Deliverable 6.1, DEVOTES ProjectIn managing for marine biodiversity, it is worth recognising that, whilst every species contributes to biodiversity, each contribution is not of equal importance. Some have important effects and interactions, both primary and secondary, on other components in the community and therefore by their presence or absence directly affect the biodiversity of the community as a whole. Keystone species have been defined as species that have a disproportionate effect on their environment relative to their abundance. As such, keystone species might be of particular relevance for the marine biodiversity characterisation within the assessment of Good Environmental Status (GEnS), for the Marine Strategy Framework Directive (MSFD).The DEVOTES Keystone Catalogue and associated deliverable document is a review of potential keystone species of the different European marine habitats. The catalogue has 844 individual entries, which includes 210 distinct species and 19 groups classified by major habitat in the Baltic Sea, North East Atlantic, Mediterranean, Black Sea (EU Regional Seas) and Norwegian Sea (Non-­‐EU Sea). The catalogue and the report make use/cite 164 and 204 sources respectively. The keystones in the catalogue are indicated by models, by use as indicators, by published work (e.g. on traits and interactions with other species), and by expert opinion based on understanding of systems and roles of species/groups. A total of 74 species were considered to act as keystone predators, 79 as keystone engineers, 66 as keystone habitat forming species, while a few were thought of having multiple roles in their marine ecosystems. Benthic invertebrates accounted for 50% of the reported keystone species/groups, while macroalgae contributed 17% and fish12%. Angiosperms were consistently put forward as keystone habitat forming and engineering species in all areas. A significant number of keystones were invasive alien species.Only one keystone, the bivalve Mya arenaria, was common to all four EU regional seas. The Mediterranean Sea had the largest number of potential keystones (56% of the entries) with the least in the Norwegian Sea. There were very few keystones in deep waters (Bathyal-­‐Abyssal, 200+ m), with most reported in sublittoral shallow and shelf seabeds or for pelagic species in marine waters with few in reduced/variable salinity waters. The gaps in coverage and expertise in the catalogue are analysed at the habitat and sea level, within the MSFD biodiversity component groups and in light of knowledge and outputs from ecosystem models (Ecopath with Ecosim).The understanding of keystones is discussed as to when a species may be a dominant or keystone with respect to the definition term concerning ‘disproportionate abundance’, how important are the ‘disproportionate effects’ in relation to habitat formers and engineers, what separates a key predator and key prey for mid-­‐trophic range species and how context dependency makes a species a keystone. Keystone alien invasive species are reviewed and the use of keystone species model outputs investigated. In the penultimate sections of the review the current level of protection on keystone species and the possibilities for a keystone operational metric and their use in management and in GEnS assessments for the MSFD are discussed. The final section highlights the one keystone species and its interactions not covered in the catalogue but with the greatest impact on almost all marine ecosystems, Homo sapiens

    An environmental assessment of risk in achieving good environmental status to support regional prioritisation of management in Europe

    Get PDF
    The Marine Strategy Framework Directive (MSFD) aims to achieve Good Environmental Status (GES) in Europe's Seas. The requirement for regional sea authorities to identify and prioritise issues for management has meant that standardized methods to assess the current level of departure from GES are needed. The methodology presented here provides a means by which existing information describing the status of ecosystem components of a regional sea can be used to determine the effort required to achieve GES. A risk assessment framework was developed to score departure from GES for 10 out of the 11 GES descriptors, based on proposed definitions of 'good' status, and current knowledge of environmental status in each of the four regional seas (North-East Atlantic, Mediterranean Sea, Baltic Sea and Black Sea). This provides an approach for regional evaluation of environmental issues and national prioritisation of conservation objectives. Departure from GES definitions is described as 'high', 'moderate' or low' and the implications for management options and national policy decisions are discussed. While the criteria used in this study were developed specifically for application toward MSFD objectives, with modification the approach could be applied to evaluate other high-level social, economic or environmental objectives. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved

    Themis2/ICB1 Is a Signaling Scaffold That Selectively Regulates Macrophage Toll-Like Receptor Signaling and Cytokine Production

    Get PDF
    BACKGROUND: Thymocyte expressed molecule involved in selection 1 (Themis1, SwissProt accession number Q8BGW0) is the recently characterised founder member of a novel family of proteins. A second member of this family, Themis2 (Q91YX0), also known as ICB1 (Induced on contact with basement membrane 1), remains unreported at the protein level despite microarray and EST databases reporting Themis2 mRNA expression in B cells and macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Here we characterise Themis2 protein for the first time and show that it acts as a macrophage signalling scaffold, exerting a receptor-, mediator- and signalling pathway-specific effect on TLR responses in RAW 264.7 macrophages. Themis2 over-expression enhanced the LPS-induced production of TNF but not IL-6 or Cox-2, nor TNF production induced by ligands for TLR2 (PAM3) or TLR3 (poly IratioC). Moreover, LPS-induced activation of the MAP kinases ERK and p38 was enhanced in cells over-expressing Themis2 whereas the activation of JNK, IRF3 or NF-kappaB p65, was unaffected. Depletion of Themis2 protein by RNA inteference inhibited LPS-induced TNF production in primary human macrophages demonstrating a requirement for Themis2 in this event. Themis2 was inducibly tyrosine phosphorylated upon LPS challenge and interacted with Lyn kinase (P25911), the Rho guanine nucleotide exchange factor, Vav (P27870), and the adaptor protein Grb2 (Q60631). Mutation of either tyrosine 660 or a proline-rich sequence (PPPRPPK) simultaneously interrupted this complex and reduced by approximately 50% the capacity of Themis2 to promote LPS-induced TNF production. Finally, Themis2 protein expression was induced during macrophage development from murine bone marrow precursors and was regulated by inflammatory stimuli both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: We hypothesise that Themis2 may constitute a novel, physiological control point in macrophage inflammatory responses

    Feel4Diabetes healthy diet score: Development and evaluation of clinical validity

    Get PDF
    Background: The aim of this paper is to present the development of the Feel4Diabetes Healthy Diet Score and to evaluate its clinical validity. Methods: Study population consisted of 3268 adults (63% women) from high diabetes risk families living in 6 European countries. Participants filled in questionnaires at baseline and after 1 year, reflecting the dietary goals of the Feel4Diabetes intervention. Based on these questions the Healthy Diet Score was constructed, consisting of the following components: breakfast, vegetables, fruit and berries, sugary drinks, whole-grain cereals, nuts and seeds, low-fat dairy products, oils and fats, red meat, sweet snacks, salty snacks, and family meals. Maximum score for each component was set based on its estimated relative importance regarding T2DM risk, higher score indicating better quality of diet. Clinical measurements included height, weight, waist circumference, heart rate, blood pressure, and fasting blood sampling, with analyses of glucose, total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides. Analysis of (co) variance was used to compare the Healthy Diet Score and its components between countries and sexes using baseline data, and to test differences in clinical characteristics between score categories, adjusted for age, sex and country. Pearson''s correlations were used to study the association between changes from baseline to year 1 in the Healthy Diet Score and clinical markers. To estimate reproducibility, Pearson''s correlations were studied between baseline and 1 year score, within the control group only. Results: The mean total score was 52.8 ± 12.8 among women and 46.6 ± 12.8 among men (p < 0.001). The total score and its components differed between countries. The change in the Healthy Diet Score was significantly correlated with changes in BMI, waist circumference, and total and LDL cholesterol. The Healthy Diet Score as well as its components at baseline were significantly correlated with the values at year 1, in the control group participants. Conclusion: The Feel4Diabetes Healthy Diet Score is a reproducible method to capture the dietary information collected with the Feel4Diabetes questionnaire and measure the level of and changes in the adherence to the dietary goals of the intervention. It gives a simple parameter that associates with clinical risk factors in a meaningful manner

    Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231).</p> <p>Methods</p> <p>Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion.</p> <p>Results</p> <p>Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis.</p> <p>Conclusions</p> <p>Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer.</p
    corecore