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Abstract 

There is an increasing demand for environmental assessments of the marine environment to include 

ecosystem function. However, existing schemes are predominantly based on taxonomic (i.e. structural) 

measures of biodiversity. Biodiversity and Ecosystem Function (BEF) relationships are suggested to 

provide a mechanism for converting taxonomic information into surrogates of ecosystem function. This 

review assesses the evidence for marine BEF relationships and their potential to be used in practical 

monitoring applications (i.e. operationalized). 

Five key requirements were identified for the practical application of BEF relationships: 1) a complete 

understanding of strength, direction and prevalence of marine BEF relationships, 2) an understanding 

of which biological components are influential within specific BEF relationships, 3) the biodiversity of 

the selected biological components can be measured easily, 4) detail which ecological mechanisms are 

the most important for generating marine BEF relationships, e.g. identity effects or complementarity, 

and 5) establish what proportion of the overall functional variance is explained by biodiversity, and 

hence BEF relationships. 

Many positive and some negative BEF relationships were found within the literature, although many 

reproduced poorly the natural species richness, trophic structures or multiple functions of real 

ecosystems. Null relationships were also reported. The consistency of the positive and negative 

relationships was often low that compromised the ability to generalize BEF relationships and confident 

application of BEF within marine monitoring. Equally, some biological components and functions have 

received little or no investigation.  

Expert judgement was used to attribute biological components using spatial extent, presence and 

functional rate criteria. This approach highlighted the main contributing biological components to the 

ecosystem functions, and that many of the particularly influential components were found to have 

received the least amount of research attention. 

The need for biodiversity to be measureable (requirement 3) is possible for most biological components 

although difficult within the functionally important microbes. 
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Identity effects underpinned most marine BEF relationships (requirement 4). As such, processes that 

translated structural biodiversity measures into functional diversity were found to generate better BEF 

relationships.  

The analysis of the contribution made by biodiversity, over abiotic influences, to the total expression 

of a particular ecosystem function was rarely measured or considered (requirement 5). Hence it is not 

possible to determine the overall importance of BEF relationships within the total ecosystem 

functioning observed. In the few studies where abiotic factors had been considered, it was clear that 

these modified BEF relationships and have their own direct influence on functional rate.  

Based on the five requirements, the information required for immediate ‘operationalization’ of BEF 

relationships within marine functional monitoring is lacking. However, the concept of BEF inclusion 

within practical monitoring applications shows promise for providing surrogate indicators of 

functioning. 
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1. Introduction 

The physical, chemical and biological processes that transform and translocate energy or materials in 

an ecosystem are termed ecosystem functions (Naeem, 1998; Paterson et al., 2012). Ecosystem 

functioning generally describes the combined effects of individual functions, with the overall rate of 

functioning being governed by the interplay of abiotic (physical and chemical) and/or biotic factors 

(Reiss et al., 2009). Furthermore, these ecosystem functions represent a significant component of 

ecosystem health (Tett et al., 2013) and provide ecosystem services that benefit society (Paterson et al., 

2012). It is now widely hypothesised that ecosystem function is compromised by a global trend of 

biodiversity loss, linked to human activities and climate change (Loreau, et al. 2001; Covich et al. 2004). 

This is widely referred to as the Biodiversity Ecosystem Function relationship (BEF).  

The need to ensure the sustainable functioning of aquatic ecosystems is acknowledged by many marine 

policy obligations, either explicitly (e.g. the European Marine Strategy Framework Directive, MSFD, 

2008/56/EU), or indirectly (by addressing structural aspects which can be related to functioning; e.g., 

EU Water Framework Directive WFD, Habitats Directive). The MSFD aims to achieve Good 

Environmental Status (GEnS) of European seas by 2020.The MSFD definition of GEnS includes the 

requirement that ‘the structure, functions and processes of the constituent marine ecosystems allow 

those ecosystems to function fully and to maintain their resilience to human-induced environmental 

change ‘The GEnS assessment can be interpreted as requiring 1) functioning to be considered at all 

levels of biological organization (cell, individual, population, community and ecosystem) and 2) the 

potential to relate these functions to GEnS indicators and overall ecosystem health (Tett et al., 2013). 

Consequently, this review aims to fulfil the clear need of addressing functioning in ecosystem 

monitoring by assessing the evidence for biodiversity and ecosystem function relationships and their 

potential to support this objective. 

Structurally-based biodiversity assessments, such as species richness and abundance (Gray and Elliott 

2009), are extensively used to monitor components of the marine ecosystem (Birk et al., 2012). These 

structural indicators are routinely used because they are well established, cost-effective and provide 

structural surrogates (proxies) for ecosystem condition and functional state (Gray and Elliott, 2009). 
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However, development of Biodiversity and Ecosystem Functioning (BEF) relationship theory 

potentially provides a more direct, proven and tangible link between structural measures of biodiversity, 

specific ecosystem functions and ultimately ecosystem functioning assessments. Using these 

relationships in practical monitoring applications (‘operationalizing’ BEF) provides a route by which 

biological diversity information can be translated potentially into surrogates of ecosystem functionality 

that ultimately help fulfil monitoring obligations and policy goals. Although direct measurements of 

specific ecosystem functions are often more straight-forward and cost-effective, the use of biodiversity 

information and BEF relationships has the following benefits: 1) one biological dataset can provide 

surrogates of multiple ecosystem functions; 2) combines the analysis of structural and functional status; 

3) predictions of function can be generated, based on known sensitivity of individual species, within 

realistic patterns of biodiversity loss, and 4) a transparent approach where functional evaluations are 

based on biodiversity, thereby incorporating the biological apparatus of functional delivery within these 

assessment.  

 This review aims to explore the prevalence and nature of marine BEF relationships and the potential 

of these relationships to be used in operational monitoring of marine environmental health. The key 

objectives are to 1) discuss what information is required for the consistent and confident application of 

BEF relationships within ecosystem functioning monitoring; 2) review the available information on 

how marine biodiversity relates with specific ecosystem functions and examine both strength, 

consistency, direction and important application principles such as mechanism of delivery 

(complementarity and identity effects); 3) identify the biological components that are most relevant in 

their contribution to specific ecosystem functions, taking into account also their relevance to current, 

key management and policy frameworks; 4) assess the limitations and future work required to fully 

operationalize BEF relationships, and 5) provide a framework for the incorporation of BEF relationships 

within marine monitoring. Hence we give: 1) the key requirements for the practical application, 2) a 

review of the BEF evidence in relation to these requirements and 3) an overall assessment of the 

potential of BEF relationships to be used in practical applications of ecosystem monitoring and a 

framework by which this could be achieved.  
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1.1. Biodiversity and Ecosystem Functioning relationships 

Biodiversity and Ecosystem Functioning research has recently proliferated in response to scientific and 

public awareness of the widespread and unprecedented human-induced biodiversity turnover (β 

diversity scale) and loss in many biological components (i.e. biodiversity is routinely deconstructed into 

measureable, manageable and meaningful biological components or features: broad groupings, based 

on either taxonomic or ecological similarity, could include for example microbes, benthic invertebrates, 

phytoplankton, and fish) resulting in the global emergence of communities with novel species 

configurations (Pimm et al., 1995; Bulling et al., 2010; Dornelas et al., 2014; Pandolfi et al., 2014). 

Such changes have potential implications for the provision of ecosystem services and societal benefits 

(Chapin et al. 1997, Covich et al. 2004; Solan et al., 2004; Worm et al., 2006; Atkins et al., 2011; 

Cardinale et al., 2012; Hooper et al., 2012; UK National Ecosystem Assessment, 2014).  

Biodiversity and Ecosystem Functioning research is increasingly centred on whether altered species 

diversity affects functions (Loreau, et al. 2001; Covich et al. 2004). The underlying BEF theory 

postulates that changes in biodiversity will result in altered ecosystem functions or, more particularly, 

that higher and more efficient functioning rates comes from highly diverse areas. This is presumed to 

be because diverse communities are more likely to contain a greater range of functional traits and 

environmental sensitivities (Chapin et al. 1997). High diversity therefore entails opportunities for more 

efficient resource use as well as providing stability to ecosystem processes in variable environments 

and in the face of disturbance (Chapin et al. 1997). Alternatively, systems with species-poor 

communities are theoretically likely to be functionally poorer, less resistant (capacity to resist change) 

and resilient (capacity to recover from change) to disturbance than systems with species-rich 

communities (Covich et al. 2004; Stachowicz et al. 2007). However, this has been questioned for 

naturally stressed areas such as estuaries in which a lower diversity but high physico-chemical 

variability appears to confer greater resilience and resistance (Elliott and Quintino, 2007).  

Before analyzing the evidence on BEF relationships in the marine environment and its potential for 

practical application within monitoring programmes, it is important to clarify the main concepts 
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regarding the BEF theory. Precision of the definition and measurement of BEF relationships and their 

elements is especially important to understand the potential and limitations for the general 

operationalization within monitoring programmes. A brief summary of BEF concepts and mechanisms 

is only given here to allow a better understanding of the results presented in this paper; further detailed 

information can be found in Scherer-Lorenzen (2005) and Reiss et al. (2009). 

Biodiversity and ecosystem function relationships, if present, can take many forms (Figure 1). These 

arise from linear positive or negative relationships (proportional gain or loss) or exponential (high and 

low redundancy models) (Naeem and Wright, 2003). Positive, linear BEF relationships suggest that 

additional units of biodiversity (this can be taxonomic units such as species richness or functional 

diversity) have an equal and additive contribution to an ecosystem function (Naeem and Wright, 2003). 

This would be indicative of situations where complementarity (transgressive over-yielding) was 

occurring, i.e. individual species perform better in diverse communities when compared to monoculture 

due to facilitation and niche partitioning in shared resource use. When several biodiversity units are 

capable of providing the same function, and therefore the same change in ecosystem function, 

logarithmic relationships are likely. The species range beyond the asymptote are often considered to be 

redundant (Naeem and Wright, 2003). Complementarity provides what might be considered the truest 

form of BEF relationships. However, in situations where particular species have a disproportionate 

functional role, they can also generate positive BEF relationships and are termed identity effects (this 

form of non-transgressive over-yielding can also be called sampling or selection effects). Where identity 

effects (see glossary) are prevalent, stepped or riveted relationships might be apparent. Functional 

diversity measures (such as Biological Traits Analysis that uses a series of life history, morphological 

and behavioural characteristics of species present in assemblages to indicate aspects of their ecological 

functioning e.g. Bremner, 2008), rather than taxonomic methods, are suggested as way of partially 

compensating for both redundancy and identity effects.  
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Figure 1. Potential ‘Biodiversity and Ecosystem Function’ relationships. 

Despite equivocal evidence, there is a general consensus that marine biodiversity and ecosystem 

function relationships do exist, and positive and negative effects of biodiversity have been observed in 

several marine ecosystem functions (Worm et al., 2006; Stachowicz et al., 2007; Cardinale et al., 2012; 

Gamfeldt et al., in press). Assessing the existence, strength and shape of this relationship provides a 

basis for the indirect estimation of key ecosystem functions using structural measures of biodiversity. 

This implies the potential to use BEF relationships in practical applications (often termed 

operationalization) and generate predictions of specific ecosystem functions from existing biodiversity 

information.  

2. Practical application of BEF relationships within GEnS monitoring and 

management 

Although the overall form of many BEF relationships has been documented (Stachiwicz et al., 2007; 

Naeem et al., 2009; Cardinale et al., 2012; Gamfeldt et al., in press) this alone does not provide 

sufficient information to immediately use these relationships for practical applications (operationalize).  
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Five key issues, as considered below, aim to define whether BEF relationships can form an integrated 

component in consistent, pragmatic and indicative marine monitoring. This requires us to investigate 

the following issues: 1) the existence of BEF relationships, 2) which biological components contribute 

to which ecosystem functions and therefore involved in specific BEF relationships, 3) whether the 

biodiversity and function of the selected biological components be measured easily, 4) detail which 

mechanisms generates BEF relationships, e.g. identity effects, and 5) establish what proportion of the 

overall variance of a given function is explained by biodiversity, and hence BEF relationships. 

2.1. Operational requirement 1: do BEF relationships exist in marine ecosystems? 

Although there is broad acceptance of marine BEF relationships, there is also recognition of their 

variability and context dependency (Bulling et al. 2010; Cardinale et al., 2012). Practical monitoring 

applications, i.e. operationalization, of the BEF concept however, requires the existence of a clear, 

consistent and unambiguous relationship between habitats, biological components and ecosystem 

functions. Furthermore, simply knowing the presence and direction of a BEF relationship is not 

sufficient for its operational use. The shape of the functional response between a biodiversity indicator 

and a specific ecosystem function (linear, logarithmic, exponential, power, etc.) also needs to be 

determined so that predictions can be made across the range of natural gradients of biodiversity. 

Although different types of BEF relationships have been demonstrated in the literature, especially 

positive relationships, there is no reason why negative BEF relationships cannot be used in monitoring 

methodologies. However, the incorporation of positive BEF relationships within a practical ecosystem 

monitoring application is particularly desirable as improvements in the system structure (biodiversity) 

would also lead to an improvement in its functioning, thereby generating synergistic enhancements in 

both conservation and ecological objectives. 

In the same way that biodiversity needs to be defined and separated into manageable units, total 

ecosystem functioning also needs to be subdivided into meaningful components that can be described 

and measured. High level and holistic measures of ecosystem functioning that account for 

multifunctionality are rare, with the majority of the literature focusing on the relevance of biodiversity 

in the context of specific functions (Mouillot et al., 2011). Accordingly, evidence for BEF relationships 
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in marine temperate systems is grouped under five broad processes (groupings of ecosystem functions) 

of 1) biomass production, 2) organic matter transformation, 3) ecosystem metabolism, 4) nutrient 

cycling and 5) physical engineering (Figure 2). This grouping is generally agrees with that used by 

Giller et al. (2004), representing key functions that control and distribute resources in marine 

ecosystems (nutrients, energy, physical space/habitat), through interactions such as production, 

consumption and transformation. Within these five categories, the reviewed evidence is collated by 

discrete biological components including microbes, phytoplankton, zooplankton, macroalgae, 

angiosperms, benthic invertebrates, fish and cephalopods, seabirds, reptiles and marine mammals.  

Figure 2. Relationships between ecosystem functions used within the review. 

Different biological components can contribute to the same ecosystem function (e.g. phytoplankton, 

macroalgae and angiosperms all contribute to primary production) although several attributes of a 

biological component may modify and scale its functional contribution (Table 1). These include: 1) its 

spatial extent/occurrence within multiple habitats; 2) presence (biomass/abundance), and 3) functional 

rate. These factors were considered to rank the relative contribution of the different biological 

components to each ecosystem function (Table 1), as informed by the BEF literature review. Due to the 

high variability in the measurement units characterizing these attributes within the reviewed studies, 

and given the need of obtaining comparable data across the different components, functions, studies, 

etc., a rigorous quantitative assessment method could not be applied, and a scoring system was used 
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based on semi-quantitative criteria, with a certain degree of expert judgment also involved (Table 2). In 

particular, the spatial extent of a biological component was scored based on its degree of occurrence at 

both the habitat and regional scales (Table 2), under the assumption that, although different components 

can be locally important, those that are more widespread and resident in multiple habitats are more 

likely to contribute to an ecosystem function at the regional level, in line with the scale of assessment 

required for regional marine monitoring. 

Presence was scored based on the relative biomass typically characterizing a biological component, as 

assessed by combining the evaluation of its abundance, body size and trophic level. Based on food web 

reviews, the productivity of a trophic level is typically between 5 – 20% of the level below it (Trites, 

2001). Total biomass declines with increasing trophic level whilst average body size increases. This 

leads to consistent ratios within food webs and the well-recognized pyramidal form of trophic webs. 

The steepness of these pyramids is related to the transfer efficiency between trophic levels. It therefore 

seems appropriate to scale the presence of the biological components according to trophic position, i.e. 

biological components at high higher trophic levels may be less important for certain ecosystem 

functions that those at lower levels (Table 1 and Table 2). 

The assessment of functional rate by each biological component, using body size as a proxy (assuming 

increasing rates with decreasing body size (Kleiber, 1947)) is important given the potential availability 

of resources required as function substrates, i.e. potential levels of limitation (Table 2). For example, 

considering the contribution of phytoplankton, macroalgae and angiosperms to primary production, 

presence and rate scaling were assessed based on the information on biomass and growth rate. As 

indicated above, the relative presence of ocean phytoplankton in terms of biomass is very low (Field et 

al., 1998), but the high growth rate and wide spatial extent makes the phytoplankton a critical and 

significant contributor to primary production in marine ecosystems. In contrast, although angiosperms 

and macroalgae have high growth rates and standing biomass, they are confined to a limited number of 

habitats and regions, thereby decreasing their regional contribution to primary production, hence their 

lower score compared to phytoplankton (Table 1).  
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Finally, ecosystem functions that are disproportionately influenced by aspects of spatial extent, presence 

or rate have been adjusted using expert judgment. For example, functionality provided by physical 

engineering may be more related to presence (biomass/abundance), whereas biogeochemical processes 

may be more dependent on processing rates (e.g. of nutrient cycling, organic matter decomposition). 

2.1.1. Ecosystem process: biomass production 

The rate at which biomass is generated, both by autotrophic and heterotrophic organisms, is a key 

process supporting the functioning of a viable ecosystem. Primary production, via photosynthesis and 

chemosynthesis, provides the biomass to support secondary production, thereby allowing energy and 

nutrient transfer across trophic levels (Figure 2). Secondary production is widely accepted as a critical 

ecosystem process and is regularly used as a functional metric. Phytoplankton, chemosynthetic 

microbes, macroalgae and angiosperms are the main primary producers in temperate marine ecosystems 

(Table 1), supporting heterotrophic microbes, zooplankton, nekton and benthic invertebrates via trophic 

links. In addition, both primary and secondary production generate by-products that support other 

ecosystem functions (e.g. ecosystem metabolism, nutrient cycling). 
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Table 1. Ecosystem functions associated with differing marine biological components (functions modified from Giller et al. 2004). Expert judgment was used 

to allocate low (1) to high (5) values for spatial extent/prevalence (first value), presence, i.e. standing biomass/abundance (second value) and functional rate 

(third value). Values have been multiplied together to generate a summary value of the potential functional output. 

  Biological component 

 Ecosystem process  Ecosystem function Microbes Phytoplankton Zooplankton Macroalgae Angiosperms Benthic invertebrates 
Higher trophic 

levels1 

Biomass production  

Primary productivity 5*1.5*3.5=26.25 4*2.5*5.5=55  2*5*3.5=35 1*5*3.5=17.5   

Secondary 

productivity 5.5*2.5*3.5=48.125  4.5*3*4.5=60.75   3.5*3*3.5=36.75 4.5*2*1.5=13.5 

Organic matter 

transformation 

Organic matter 

decomposition and 

removal 5*2.5*4.5=56.25  4*3*4.5=54   3*3*3.5=31.5 4*2*1.5=12 

Import/export of 

organic matter  4*2.5*5.5=55 4*3*4.5=54 2*5*3.5=35 1*5*3.5=17.5 3*3*3.5=31.5 4*2*1.5=12 

Ecosystem 

metabolism 

Carbon mineralization 5*3*4.5=67.5  4*3.5*4.5=63   3*3.5*3.5=36.75 4*2.5*1.5=15 

Oxygen consumption 5*2.5*4.5=56.25  4*3*4.5=54   3*3*3.5=31.5 4*2*1.5=12 

Oxygen production  4*3*5.5=66  2*5.5*3.5=38.5 1*5.5*3.5=19.25   

Elemental cycling 

Denitrification 2*2.5*4.5=22.5       

Nitrification 5*2.5*4.5=56.25       

Nitrogen fixation 4*2.5*4.5=45       

Exchange of limiting 

nutrients 5*3*4.5=67.5 4*3*5.5=66 4*3.5*4.5=63 2*5.5*3.5=38.5 1*5.5*3.5=19.25 3*3.5*3.5=36.75 4*2.5*1.5=15 

Physical structuring  

Bioturbation      3*3*3.5=31.5  

Habitat provision    2*5.5*3=33 1*5.5*3=16.5 3*3.5*3=31.5  

Water velocity and 

particle flux 

modification    2.5*5.5*3=41.25 1.5*5.5*3=24.75 3.5*3.5*3=36.75  

1 Fish, cephalopods, seabirds, reptiles and marine mammals. 
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Table 2. Criteria used to estimate the spatial extent, presence and functional rate of biological components examined by ecosystem function. 

 Spatial Extent Presence Rate 

Score Regions 

Habitats 

Body size Abundance 

Primary 

production 

Secondary 

production Body size Limitation 

1 Few regions 
Some habitats 

Micro Low + 0.5 - 0.5 Mega Low/high 

2 Some regions 

Some habitats 

Micro High + 0.5 - 0.5 Macro High 

3 Some regions 

Many habitats 

Macro Low + 0.5 - 0.5 Macro/Micro Low 

4 Many regions 

Some habitats 

Macro High + 0.5 - 0.5 Micro High 

5 Many regions 

Many habitats 

Mega - + 0.5 - 0.5 Micro Low 
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2.1.1.1. Ecosystem function: primary production 

The primary route of carbon fixation is photosynthesis, although the required context of functional 

importance necessitates the separation of the biological components of biodiversity. Phytoplankton 

photosynthetically fixes up to 50,000 Tg of carbon per year, contributing to nearly half of global primary 

production (Longhurst et al., 1995) (on average 140 g C m−2 yr−1 Falkowski et al., 1998).  

In addition, photosynthetic carbon fixation by macroalgal kelps such as the giant kelp Macrocystis 

pyrifera, ranges from 0.46 to 3.50 kg C m-2 yr-1, with fucoid species contributing around 0.30 to 1.30 

kg C m-2 yr-1 (Lüning 1990; Barrón et al., 2003). Seagrass meadows are also highly productive habitats 

contributing an estimated mean net community productivity of 1.19 kg C m-2 yr-1 (Duarte et al., 2010). 

Suzuki (1997) suggests that the total global area of marine macroalgae and angiosperms is approx. 

600,000 km2 producing approx. 0.460 Tg C yr-1. Muraoka (2004) suggests that this is equal to 23% of 

the total of oceanic carbon dioxide uptake estimation by Siegenthaler and Sarmiento (1993). Microbes 

can also synthesize inorganic carbon using reduced chemical compounds as energy sources, 

contributing to about 52% of carbon fixation globally via microbial nitrification processes (estimated 

addition of organic matter approx. 7700 Tg C y-1; Middelburg, 2011). This suggests that chemosynthetic 

processes can be quantitatively more important than previously thought (Molari et al. 2013). Despite 

this, there have been no investigations of microbial BEF associated with chemosynthetic primary 

production. 

Although oceanic autotrophs account for approximately 46 % of the biospheric net primary production, 

they only account for about 0.2% of the global primary producer biomass (Field et al., 1998), and so 

standing biomass does not reflect production (Cebrian, 2002). However, many BEF-related studies have 

identified positive relationships between phytoplankton species richness (taken as an indicator of 

biodiversity) and primary production (Balvanera et al. 2006; Cardinale et al. 2006; Cardinale et al. 

2007; Hector et al. 2007; Ptacnik et al. 2008; Goebel et al., 2014). Experimental studies have revealed 

positive, asymptotically saturating relationships between ecosystem-wide phytoplankton diversity and 

productivity (Goebel et al., 2014). Within the positive BEF relationships identified, both identity effects 
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and complementarity can produce positive diversity-productivity relationships (Loreau and Hector 

2001; Cardinale et al., 2006).  

Both negative (Kraufvelin et al., 2010; Bracken and Williams, 2013) and positive BEF relationships 

have been reported within macroalgal assemblages in the context of photosynthetic carbon fixation 

(Bruno et al., 2005; Arenas et al., 2009; Boyer et al., 2009; Griffin et al., 2009). Although not using an 

experiment designed to specifically test the relationship between diversity and productivity, Kraufvelin 

et al. (2010) observed declining primary production within increasing macroalgal species richness in 

temperate rocky shores (SE Norway) driven by strong identity effects associated with the resident 

fucoids. A similar relationship was observed by Bracken and Williams (2013) for seaweed assemblages 

in a northern California (USA) rocky shore, where photosynthetic efficiency was used as an indicator 

of primary production. Unlike many other studies, experimental species richness gradients species 

richness gradients were obtained through random allocation (typical of most studies) and non-random 

methods (mimicking naturally occurring assemblages). While increases in species richness did not lead 

to changes in function when species were randomly combined, a negative relationship with 

photosynthetic efficiency was detected when using realistic (non-randomly selected) assemblages 

(although no relationship was found with maximum photosynthetic rate). Alternatively, Griffin et al. 

(2009) found that functional diversity of rock pool macroalgae (a measure of the range of species 

functional traits in the system; Tilman, 2001), rather than species richness, correlated positively with 

primary productivity. However, the consistency of such BEF relationships may be weakened in natural 

trophic structures, as typical BEF experiments do not include consumers. Indeed, Reynolds and Bruno 

(2012) incorporated herbivores in their macroalgal treatments and showed that the positive relationship 

observed between macroalgal diversity and primary production disappeared in the presence of 

consumers. Doubt thus remains about the predictability of potentially positive BEF relationships 

between macroalgae and carbon fixation in real ecosystems. 

Regardless of whether species richness (Bruno et al., 2005, Lanari and Coutinho, 2014) or functional 

diversity (Griffin et al., 2009) is used, species identity appears to be an important driver in determining 

the rate of primary production in macroalgae (with the exception of Boyer et al., 2009), even when 
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negative BEF relationships are considered (Kraufvelin et al., 2010). Davies et al. (2011) found that 

individual species biomass explained observed changes in primary production in macroalgae 

assemblages, and that this could be related proportionally to the effect of changes in single species 

biomass. This effect was also observed in similar experiments with saltmarsh plants and indicates that 

biomass may in some circumstances underlie identity effects in primary producer BEF relationships, 

thereby complicating the importance of biodiversity per se for the sustenance of primary production in 

such systems.  

Angiosperm studies provide the only substantial evidence for the role of genetic diversity within BEF 

relationships for productivity. Positive BEF relationships were apparent between seagrass genetic 

diversity (Zostera marina) (Williams, 2001; Hughes and Stachowicz, 2004; Ehlers et al., 2008; Hughes 

and Stachowicz, 2009; Hughes et al., 2010) and primary productivity, and also between angiosperm 

species richness (seagrass and transitional angiosperms in the Baltic) and primary productivity 

(Gustafsson and Bostrӧm, 2011). Genetic diversity was found to be particularly important for sustaining 

primary production during stressful conditions or following perturbations (Williams, 2001; Hughes and 

Stachowicz, 2004; Ehlers et al., 2008; Hughes and Stachowicz, 2009). Reusch et al. (2005) found that 

genetically diverse treatments also supported more epiphytic fauna, suggesting the influence of genetic 

diversity can propagate through to changes in secondary productivity. However, Hughes et al. (2010) 

found that BEF relationships were heavily influenced by grazer species identity. Overall, it is apparent 

that this relationship cannot be generalized and the context (i.e. the wider system of which angiosperms 

are part, including grazers) is a determinant factors affecting BEF relationships. 

2.1.1.2. Ecosystem function: secondary production  

Within microbial assemblages, about half of the carbon fixed into marine organic matter is consumed 

by heterotrophic prokaryotes (both direct consumption of primary production and undirected detritus 

sources). Typically only approx. 20% of the detrital organic pools used to sustain heterotrophic 

metabolism is converted into prokaryotic biomass, whereas most is respired (del Giorgio and Cole, 

1998). Prokaryotic biomass thus transfers some energy and material to the higher trophic levels of the 

marine food webs (Di Poi et al., 2013) and its metabolism largely contributes to carbon mineralization 
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and respiration rates of benthic ecosystems (Arndt et al., 2013). Investigations of the links between 

prokaryotic diversity and functioning in marine ecosystems are, however, rare. Available studies 

indicate a positive relationship between prokaryote diversity and prokaryote carbon conversion 

efficiency and metabolism (Danovaro and Pusceddu 2007; Langenheder et al., 2010), i.e. a higher 

prokaryotic diversity can promote higher levels of secondary production.  

Their global distribution, abundance and dominance, makes ciliates among protozoa, and the copepods 

and euphausiids among metazoa, perhaps the most significant primary consumers. Despite their 

importance for secondary production (Irigoien et al., 2004; Johnson et al., 2011), nutrient cycling and 

the translocation of organic matter, there have been no studies examining its BEF relationships. This 

may be due to difficulties in working with species with small body sizes, occupying intermediate trophic 

levels and detecting small changes in functional output. Although there are some freshwater and tropical 

studies, there is little to extrapolate these findings to temperate, marine situations. 

Capture and conversion of pelagic and benthic primary production into benthic secondary production 

is one of the most important functions undertaken by benthic invertebrates (Fowler and Knauer 1986). 

Benthic biomass is in turn consumed by mobile epifaunal species and fish, thereby supporting other 

trophic levels and pelagic habitats (Townsend and Cammen, 1988). Evidence for clear and consistent 

relationships between macrofaunal biodiversity and secondary production is lacking, as both positive 

(O’Gorman et al., 2008; Harvey et al., 2013) and no (Valdivia et al., 2009) relationships have been 

reported for this component. However such relationships are likely to be of less relevance in relation to 

the importance of macrofaunal biomass and identity in predicting secondary production, given the well-

established paradigm that secondary productivity decreases with increasing macrofaunal size 

(production to biomass (P:B) ratio increases with a decrease in size, shorter longevity and age of an 

organism; Jennings et al., 2002; Gray and Elliott, 2009). As the historical separation between 

macrofauna and meiofauna in the literature is artificially stipulated by separation at 500 and 63 µm 

sieves respectively, and that both components include different life stages of the same organisms, this 

attribute is also likely to apply to meiofauna (Higgins and Thiel, 1988). Thus, it seems that secondary 
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production may more easily be predicted by macrofauna and meiofauna abundance and biomass, and 

that biodiversity may thus be a less useful predictor for monitoring purposes.  

The meiofaunal biomass turnover rate is on average 5 times higher than that of macrofauna and, despite 

having a lower biomass (Giere, 2009), this component frequently exceeds the production of 

macrofaunal assemblages. The potential significance of meiofauna in the functioning of benthic 

sedimentary environments has been examined within relatively low diversity, free-living nematode 

communities, whose biodiversity (measured through a set of different indices, including, for example, 

species richness, Shannon diversity, functional diversity as number of trophic traits) is generally related 

positively with rates of biomass production and heterotrophic prokaryotic carbon production (Danovaro 

et al. 2008a; Danovaro et al. 2008b, Pusceddu et al. 2014). The shape of this positive relationship (linear 

to exponential functions) varied when habitats from different water depths were considered (Danovaro 

et al. 2008b). Experimental responses of natural nematode assemblages to thermal stress led Gingold 

et al. (2013) to hypothesize that either (saturating) rivet-like or idiosyncratic relationships are equally 

probable between nematode species richness and secondary production. Due to the constraints of the 

manipulative meiofauna experiments, only correlations between free-living nematodes biodiversity and 

ecosystem functioning have been investigated (Danovaro et al. 2008b, Leduc et al. 2013, Pusceddu et 

al. 2014). Although nematodes can dominate some meiofaunal communities (e.g. estuaries examined 

by Alves et al. (2009), in other habitats they may only account for only a modest contribution to 

community composition, suggesting that the potential for meiofaunal BEF relationships to exist within 

these habitats remains largely to be investigated. 

O’Gorman et al. (2008) found that as the diversity of predatory mobile epifaunal fish species increased 

(with density controlled between treatments), there was an associated increasing trend in secondary 

production for all intermediate trophic components examined (although only significant for 4 out of the 

16 taxonomic components). The greater interference among predators might have been responsible for 

the higher secondary production recorded in treatments with higher predator diversity, although there 

is a possible effect of behavioural changes in feeding activity during confinement within the benthic 

experimental cages. Using functional diversity, Harvey et al. (2013) found clear monotonic 
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relationships with two functional variables (consumption of macroalgae and of periphyton) which are 

presumed to generate proportional increases in secondary production in a rocky shore community. 

Despite very strong identity effects within the functional groups, functional richness did play a 

substantial role in explained some of the variance in ecosystem functionality during removal treatments.  

Seagrass habitats provide an additional source of BEF investigations within epiphytic consumer 

assemblages. Although some studies have failed to find positive BEF relationships between grazer 

diversity and grazer secondary production (Duffy et al., 2001, 2005, but only in the absence of higher 

trophic level consumers; Canuel et al., 2007), others have detected them (Duffy et al., 2003, 2005, in 

the presence of higher trophic level consumers; France and Duffy, 2006). A negative relationship was 

observed by Duffy et al. (2001) within mesocosm experiments (lacking trophic levels above the grazers) 

and it was associated with a low grazers species range (three rather than six species in Duffy et al. 

(2003) and four species in Duffy et al. (2005)), indicating that grazer diversity effects on secondary 

production may only be apparent at wider ranges of grazer richness (Duffy et al., 2003). The contrasting 

findings between treatments by Duffy et al. (2005) were influenced by the presence of higher trophic 

levels. Functioning did increase with richness when higher trophic predators were present. Duffy et al. 

(2005) suggest that richness is linked to the enhanced epifaunal grazing pressure on resources and the 

dampening of community fluctuation from predation pressure. France and Duffy (2006) developed this 

theme by experimentally modifying grazer diversity, dispersal and spatial scale within a meta-

community structure. Richness within meta-community units and, to a less extent, the dispersal 

potential affected the net productivity at multiple levels within experimental units and large meta-

communities. Most BEF relationships observed, both positive and negative, were underpinned by strong 

species identity effects that sometimes obscured the influence of species richness alone. It was 

suggested that the identity effects were mediated through a combination of qualitative and quantitative 

differences in grazing methods and different population growth rates between species (Duffy et al., 

2001). Similarly, Canuel et al. (2007) found that identity effects dominated epifaunal grazer functions 

that convert primary productivity, from seagrass and associated epiphytic algae, into organic matter 
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within the sediment, with grazer richness and food chain length having little or no influence (the latter 

finding being in contrast to that of Duffy et al., 2005). 

Fish and cephalopods are both opportunistic predators taking zooplankton, macroalgae and other fishes 

and cephalopod species, and are themselves prey for other organisms (Cury et al., 2003), hence they 

play a pivotal role in marine food webs by linking lower and upper trophic levels. Cephalopods 

(particularly squid) have exceptionally high feeding rates (Clarke, 1996; Wells and Clarke 1996; 

Hunsicker and Essington, 2008) and also sustain many marine predators, such as bony fish, 

elasmobranchs, marine birds and mammals, especially whales (e.g. Clarke, 1996; Smale, 1996). Their 

importance as prey is enhanced by their very high individual growth rates, which, together with other 

life cycle characteristics (exclusively carnivorous diet, semelparity, short lifespan) leads to high 

biomass turnover rates or productivity (Boyle, 2002). Despite this, there has been no investigation of 

BEF relationships between fish or cephalopod diversity and temperate marine secondary production, a 

fact most likely due to the higher mobility and longer life cycles of these organisms e.g. compared to 

benthic invertebrates, leading to greater difficulties in undertaking manipulation experiments for testing 

of BEF relationships. Equally, BEF does not appear to have been studies in seabirds and marine 

mammals.  

2.1.2. Ecosystem process: organic matter removal and transformation 

The transformation of non-living organic matter encompasses the essential ecosystem functions that 

distribute and remove organic matter from the ecosystem (Figure 1). The consumption of organic matter 

is associated with an additional input of secondary production as well as with the mobilization of 

nutrients in the system, both resources being made available for re-use in primary production processes, 

via the microbial loop. Benthic invertebrate bioturbation can also bury matter thereby removing it from 

the ecosystem (Figure 2). Almost all biological components move organic matter between habitats (e.g. 

faecal production by zooplankton is particularly important for the vertical transport of organic matter 

from the photic zone).  

Organic material produced in the pelagic zone (e.g. as waste products of biological processes) is a 

resource which is transferred and made available to the benthic system through settlement, with 
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zooplankton faecal pellets being believed to be the main biological vehicle for bentho-pelagic coupling. 

Aggregates may disintegrate physically (Milligan and Hill, 1998), as well as being solubilized and 

remineralized by micro-organisms (Smith et al., 1992) and zooplankton (Kiørboe, 2000) whilst settling. 

A significant amount of dissolved organic matter (DOM) can also be released through inefficient 

feeding, excretion and defaecation, which suggests that herbivory might be an important source of 

bacterial substrate (Lampert, 1978; Gude, 1988). Despite the role of zooplankton in facilitating the flux 

of organic matter to the seabed, there are no relevant BEF studies investigating the effect of zooplankton 

diversity of such process. Larger animals also contribute to the horizontal and vertical transfer of 

organic matter between ecosystems, in the form of living biomass (Stowasser et al., 2005; Hastie et al., 

2009). Fish and cephalopods are highly mobile animals and often undertake long feeding and spawning 

migrations. Combined with their role as intermediate predators in marine food webs, this leads to 

significant translocation of organic matter that can affect ecosystem functioning and community 

structure on a seasonal and regional basis (Hastie et al., 2009). However, as with other ecosystem 

functions, experimentation difficulties with large and mobile species may have contributed to the lack 

of BEF evidence for these higher trophic components.  

Both marine seagrass and macroalgal communities are significant sources of organic carbon to the 

ecosystem, as more than 85% of temperate seagrass and macroalgal communities studied by Barrón et 

al. (2012) supported a net dissolved organic carbon release. Furthermore, there are substantial amounts 

of macrophyte-generated detritus exported to remote habitats where it provides a substantial organic 

input (Harrold et al., 1998; Maslo and Lockwood 2014). Harrold et al. (1998) observed that significant 

amounts of macroalgal biomass were being transported from the inshore habitats of production into 

deep-water canyon systems. 

Macrofaunal species are capable of substantial filtration/gathering of organic matter and sizeable 

biodeposit production (Widdows et al., 1998; Arntz et al., 1999), especially in densely populated 

epifaunal communities such as bivalve beds (Giles and Pilditch, 2006). Once consumed, material is 

either assimilated into biomass or rejected in the form of faeces and pseudo-faeces (Wotton and 

Malmqvist 2001). These biodeposits and the benthic invertebrate biomass are available for consumption 
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by other species, hence providing organic transfer between habitats and trophic levels (Snelgrove 1999). 

The subsequent flux of bioavailable nitrogen compounds from metabolized biodeposits can be 

considerable, leading to rapid recycling of nutrients, thereby enhancing rates of primary production and 

phytoplankton biomass locally (references in Newell, 2004). 

With regard to BEF relationships between macrofaunal diversity and organic matter-related ecosystem 

functions, Godbold et al. (2009) documented a positive BEF relationship between species richness of 

benthic echinoderms and the use of phytodetrital food sources. Equally, the merging of productivity, 

decomposition and infiltration (water-drainage characteristics of the salt marsh) into one metric, termed 

multifunctionality, by Hensel and Silliman (2013) increased as taxonomically diverse marsh-consuming 

species were progressively combined within treatments. It was suggested that redundancy within the 

system was low as each function was controlled by no more than two consumers, and that it is likely 

that the apparent redundancy is reduced when more ecosystem functions are examined simultaneously. 

As with almost all of the studies examined, both Godbold et al. (2009) and Hensel and Silliman (2013) 

stated that functional differences between the species (i.e. identity effects – see glossary) were 

responsible for the positive relationships between diversity and functionality. 

Prokaryotic microbes are mostly responsible for organic decomposition (Cho and Azam, 1988; Arnosti, 

2011), especially archaeal assemblages degrading detrital proteins (Lloyd et al., 2013) and recycling 

organic matter (Takano et al., 2010). As with other microbial ecosystem functions, there are few studies 

and hence less evidence for the presence of BEF relationships within microbial assemblages. Danovaro 

and Pusceddu (2007), using prokaryotic diversity (through molecular fingerprinting analysis), observed 

several positive relationships including one with organic matter decomposition rates. The diversity of 

free-living nematodes and other meiofaunal species was also found to generally relate positively with 

rates of organic matter degradation (Danovaro et al., 2008; Pusceddu et al., 2014; but in contrast see 

Leduc et al., 2013 for null relationships).  

2.1.3. Ecosystem process: ecosystem metabolism 

In addition to nutrients and energy needed to support ecosystem functioning, other elements are 

involved in the metabolic processes behind the production, consumption and decomposition of organic 
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matter (Figure 2). They can be both essential resources and waste products of ecosystem functions such 

as carbon mineralization (using respiratory waste products from all biological components; Table 1), 

oxygen consumption (metabolic precursor for all biological components) and oxygen production (net 

excess of photosynthetic waste product from primary producers). 

The relationship between carbon assimilation during primary production and oxygen production is 

expressed by the photosynthetic quotient. This ratio typically lies between 1:1.1 and 1:1.4 (Laws, 1991; 

Williams and Robertson, 1991), although deviations from these values can be observed depending on 

the particular primary producer (e.g. macroalgae examined by Rosenberg et al., 1995). Hence net 

oxygen production is approximately equal to the amount of carbon captured during primary production 

suggesting that some of the BEF relationships related to primary production might help to understand 

these metabolic functions. However, abiotic factors may substantially control some ecosystem 

metabolic functions (e.g. the atmospheric control of dissolved oxygen content in open ocean water), 

suggesting that BEF relationships probably have little influence; this may explain the absence of 

dedicated studies for these ecosystem functions.  

The dissolved oxygen generated during macroalgal and seagrass photosynthesis exceeds overall 

consumption and constitutes a major contributor for water column oxygenation (Boudouresque et al. 

2012). These sources can be particularly important in coastal areas where water bodies range from full 

oxygen saturation to hypoxia. Seagrass root systems also permeate oxygen into the surrounding 

sediments, exerting important controls on the depth of the redox transition in coastal areas (Queirós et 

al., 2011). Based on the relationship provided by the photosynthetic quotient and the BEF evidence 

with primary production (Williams, 2001; Hughes and Stachowicz, 2004; Ehlers et al., 2008; Hughes 

et al., 2009; Hughes and Stachowicz, 2009), it is likely seagrass genetic diversity may well also relate 

to oxygen production. This however is currently untested. There are some freshwater studies examining 

oxygen production along gradients of macroalgal diversity (e.g. Power and Cardinale, 2009), but there 

have been no marine studies that have specifically dealt with BEF relationships with this ecosystem 

function. 
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Ammonia excretion, phosphate excretion and, in particular, oxygen uptake by marine zooplankton are 

body-mass dependent and under the influence of habitat temperature, e.g. 84 to 96% of the observed 

variation in metabolic rate of epipelagic marine zooplankton (Ikeda, 1985). Metabolic needs for 

maintenance are a function of body weight raised by a power function of 0.75 (Kleiber, 1947), hence 

energy requirements, oxygen consumption and carbon dioxide production decrease proportionally as 

body size increases. This may suggest again that BEF relationships may not be as important as biomass 

and/or species identity within certain functions. 

Janson et al. (2012) examined a benthic invertebrate assemblage together with sediment and faunal 

oxygen uptake rates in a temperate estuarine system. Faunal oxygen uptake correlated positively with 

the species number of some, but not all, functional groups. Equally, abundance and biomass also 

correlated with faunal oxygen uptake, suggesting other biotic factors were just as important in 

modifying oxygen update, and hence carbon mineralization functions, as diversity. However, the 

dominant influence over the total oxygen uptake was abiotic factors such as grain size, organic matter 

content and temperature; this suggests that biotic influences on this ecosystem function are 

proportionally smaller than abiotic factors.  

Although macroscopic faunal components are important, benthic prokaryotic assemblages in the thin 

oxic layer of the seabed account for more than half of the total organic carbon mineralization (Jørgensen 

and Revsbech, 1989; Arndt et al., 2013), with respiration rates ranging from 1 to 10 μmol O2 cm−3 d−1 

(Rasmussen and Jørgensen, 1992). Although biodiversity and ecosystem functioning studies have often 

examined various aspects of ecosystem production, the specific functions relating to oxygen 

consumption and carbon mineralization have been rarely studied. Leduc et al. (2013) observed no 

relationships between species and functional nematode diversity with the sediment community oxygen 

consumption in naturally highly diverse meiofaunal communities along the upper slope off New 

Zealand. This was in contrast to the positive relationships detected by Danovaro et al. (2008b) and 

Pusceddu et al (2014) within higher diversity meiofaunal assemblages, suggesting a breakdown of the 

exponential BEF relationship at high levels of diversity, which may be due to increased competition or 

greater functional redundancy (Leduc et al., 2013).  
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2.1.4. Ecosystem process: nutrient cycling 

The C:N:P stoichiometry of phytoplankton ultimately controls the water column nutrient ratios, which 

are subsequently modified by microbial reactions such as the microbial degradation of settling material, 

nitrification, anaerobic ammonium oxidation (‘anammox’)/denitrification and nitrogen fixation (Figure 

1). These microbial processes can significantly influence the overall budget of nitrogen availability and 

can generate significant differences between oceanic regions (Gruber and Sarmiento, 1997). The 

physical processes, such as the bioturbation of sediments by benthic invertebrates (Table 1), can also 

increase the flux of nutrients released from sediment-based, microbial processes (Gray and Elliott, 

2009).  

2.1.4.1. Ecosystem function: denitrification, nitrification and nitrogen fixation 

As denitrification is inhibited in the presence of oxygen, this process only occurs within anoxic water 

and sediment conditions (Tiedje, 1988). By contrast, nitrogen fixation occurs in all of the oceanic basins 

(Gruber and Sarmiento, 1997), with a major contribution from the marine diazotrophic cyanobacterium 

Trichodesmium spp. (Carpenter, 1983) and secondarily from diatom genera Rhizosolenia and 

Hemiaulus (containing the endosymbiotic nitrogen fixing cyanobacteria Richelia intracellularis) 

(Arrigo, 2005 and references therein), accounting overall for an estimated increase in the current global 

supply of nitrogen by 28 Tg N yr-1 (Gruber and Sarmiento, 1997). Seagrass meadows are also zones of 

intense nitrogen fixation which can significantly contribute to the overall primary production (Welsh 

2000). Despite the importance of denitrification, nitrification and nitrogen fixation in determining the 

availability of nitrogenous products to other ecosystem processes, these functions have yet to be 

examined in relation to biodiversity gradients. This paucity probably reflects the difficulty in defining 

microbial biodiversity and measuring functional output within experimental manipulations. 

2.1.4.2. Exchange of limiting nutrients 

The availability of limiting compounds is also heavily modified by primary producer uptake and vice 

versa. In addition to the use of inorganic sources, various phytoplankton species can use dissolved 

organic nitrogen directly to meet their N needs and heterotrophic uptake of dissolved organic carbon 

has been observed in a number of dinoflagellates (Lewitus and Caron, 1991) and chrysophytes (Wheeler 
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et al., 1977, Kristiansen, 1990). Bacterioplankton (Liu et al., 2010; Tappin et al., 2012) and 

phytoplankton (Mulholland and Lee, 2009) can directly utilize oligopeptides by both external 

hydrolysis and direct assimilation depending on molecular size. Ptacnik et al. (2008) and Goebel et al. 

(2014) found positive BEF relationships in the phytoplankton. Using more than 3000 natural 

phytoplankton samples, Ptacnik et al. (2008) found that the amount of algal carbon per unit total 

phosphorus was positively related to genus richness suggesting a positive relationship between 

phytoplankton diversity and resource use efficiency of the phytoplankton communities in freshwater 

environments and the Baltic Sea. Goebel et al. (2014) also observed positive, asymptotically saturating 

relationships between ecosystem-wide phytoplankton diversity and nutrient uptake. Complementarity, 

and specifically facilitation, interactions between coexisting phytoplankton types were found to underlie 

much of the positive relationship - the composition of traits in assemblages determining the magnitude 

of complementarity and identity effects.  

Macroalgal species assimilate both nitrate and ammonium from the water column (Naldi and Wheeler, 

1999). Annual macrolagae act as carbon and nutrient (mainly nitrogen and phosphorus) sinks during 

bloom periods and subsequently become sources during die off periods through leaf shedding, grazing 

and mechanical breakage of leaves. Perennials, particularly those capable of forming dense stands such 

as kelp forests, also represent significant elemental pools. Seagrasses are capable of assimilating 

nitrogenous sources from both roots and leaves, although the uptake from the sediment, via the roots, 

is the major source (e.g. Zostera marina; Short and McRoy, 1984). Both positive and negative BEF 

relationships have been documented within macroalgal assemblages. Bracken and Stachowicz (2006) 

observed a positive relationship between species richness and nitrogen assimilation, but only when both 

ammonium and nitrate uptake rates were examined simultaneously, indicating increased resource 

partitioning and hence complementarity within intertidal macroalgal assemblages. By contrast, a 

decrease in nutrient uptake with increasing seaweed species richness was detected by Bracken and 

Williams (2013) on rocky shores. This negative relationship was only apparent when they used realistic, 

non-randomly assigned, species richness for treatments. This suggests that random species allocation 

to treatments, typical of many BEF experiments, may significantly change the expression of BEF 
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relationships, potentially confounding many BEF findings. Positive relationships were also highlighted 

between seagrass (Zostera marina) genetic diversity and nutrient cycling (Hughes et al. 2009; Hughes 

and Stachowicz, 2004). As shown with other functions, genetic diversity was particularly important 

following disturbance as pore water ammonium concentrations also decreased with increased genetic 

diversity after disturbance (Hughes and Stachowicz, 2004).  

Although sediment microbial activity is recognized as the main source of nutrients to the overlying 

water column, ammonium excretion from benthic invertebrates can be a significant contribution to this 

recycling function (Wotton and Malmqvist 2001; Jordan et al., 2009). The flux of nutrients, liberated 

by microbial processes within the sediment, can be significantly enhanced by macrofaunal bioturbation 

processes (Birchenough et al., 2012). Bioturbation can enhance nutrient cycling by as much as 35% 

(Gutiérrez, 2011), and nutrients derived in this way can contribute up to 80% of those required by 

pelagic primary producers (Dale and Prego, 2002). With the exception of one study (Bolam et al., 2002), 

positive relationships between benthic invertebrate species richness and nutrient sediment flux were 

present in several studies including Emmerson and Raffaelli (2000) (ammonium flux), Waldbusser et 

al. (2004) (inverse phosphate flux), Ieno et al. (2006) (ammonium and phosphate), Bulling et al. (2010) 

(ammonia only but not with phosphate) and Karlson et al. (2010) (nutrient incorporation within the 

sediment through biodeposit production). In all of these studies, except for Karlson et al. (2010), identity 

effects underpinned the observed BEF relationships, hence highlighting the overwhelming importance 

of the role of individual species in affecting nutrient fluxes rather than species richness per se. Although 

failing to detect either a positive or negative BEF relationship, Bolam et al. (2002) also suggested 

identity effects were present and, expressed through functional diversity, are important in maintaining 

nutrient fluxes. By contrast, Karlson et al. (2010) concluded that the positive, over-yielding relationship 

between benthic macrofaunal deposit feeders and phytodetrial processing observed was mainly 

explained by niche partitioning and/or facilitation (complementarity) rather than identity effects.  

The importance of the role of individual species (hence identity effects) within infaunal BEF 

relationships was also highlighted by Biles et al. (2003) who examined both species and functional 

richness against ammonium release from sediments. In fact, while there was not a relationship between 



29 

 

nutrient flux and species richness, the use of functional richness (trait diversity) produced a stronger, 

positive association with the studied ecosystem function, thus highlighting the potential value of traits 

analysis to provide biodiversity measures for BEF assessment and operationalization while 

compensating for identity effects (Biles et al., 2003; Hensel and Silliman, 2013). However, Emmerson 

et al. (2001) showed that the effect of either benthic species richness or functional diversity on ammonia 

release in intertidal areas varied spatially, with highly idiosyncratic relationships occurring in different 

sites. Similarly Queiros et al. (2011) highlighted the influence of habitat complexity and sediment type 

on the relative role of infaunal species as drivers of function. Hence, geographic location (and associated 

abiotic environmental features) and species identity can significantly affect the expression of BEF 

relationships, especially when underpinned by identity effects, therefore they need to be taken into 

account while attempting to operationalize BEF relationships for monitoring purposes.  

There are few studies examining BEF relationships in fish, cephalopod, seabird, reptile and mammal 

assemblages. This is probably due to the difficulty of experimental manipulations with these animals in 

controlled conditions, their occupation of higher trophic levels and possibly their probable small 

contribution to these functions (Table 1). In studies other than temperate marine habitats, McIntyre et 

al. (2007) (tropical freshwater lake system) and Allgeier et al. (2014) (tropical habitat) both found that 

declining fish diversity reduced nutrient recycling processes. These relationships were dominated by 

identity effects with relatively few species dominating nutrient recycling (McIntyre et al., 2007; 

Allgeier et al., 2014). 

2.1.5. Ecosystem process: physical environmental modification  

The occurrence of many species provides habitat for others, such as dense vegetated habitats generated 

by macroalgal and angiosperm beds (Table 1). Species adding complexity to seabed habitats tend to 

accentuate BEF relationships by promoting additional diversity, which in turn can lead to elevated 

functioning (Rilov et al., 2012; Kochmann et al., 2008). Ecosystem engineer species may also have a 

disproportionate effect on the physical environment, which can improve conditions for other species or 

significantly change other functional rates (Figure 2).  
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2.1.5.1. Ecosystem function: reef building, water velocity and particle flux/sedimentation modification 

Epifaunal benthic invertebrates can be found in extremely high densities and generate biogenic 

structures that can influence the physical environment and provide important habitat for other species 

(Rigolet et al., 2014). The rugosity (complexity) and elevation of some of these structures is sufficient 

to reduce flow rates and resuspension and increase accretion (Wildish and Kristmanson, 1984). 

Macroalgae, such as the fucoids (order Fucales) intertidally and kelps (order Laminariales) subtidally, 

are the main foundation species on most temperate hard substrata habitats (Jones et al., 1994). Both of 

these macrophyte groups modify environmental parameters, for example, by providing moist intertidal 

microclimates during emersion (Jenkins et al., 1999); modification of boundary conditions, 

sedimentation and shoreline stabilization (Hull, 1987; Boudouresque et al. 2012, Infantes et al. 2012, 

Jackson et al. 2013) and also providing a physical structure for colonization (Epifanio et al., 2003; 

Rabaut et al., 2007).  

With regard to BEF relationships within the context of provision of physical habitat, Williams (2001) 

found a positive association between intra-specific genetic diversity within Z. marina and leaf shoot 

density. Although Hughes and Stachowicz (2004) failed to find the same relationship under normal 

growth conditions, following a period of intense grazing by wildfowl, they did find that more leaf 

shoots, and hence greater habitat provision, remained in plots with higher genetic diversity, suggesting 

greater resistance in these treatments. The greater remaining biomass may also lead to a greater output 

of other functional products. There are no studies that have examined benthic invertebrate diversity and 

habitat provision.  

2.1.5.2. Ecosystem function: biomodification of the sediment matrix 

Biomodification of the sediment matrix through bioturbation, bioirrigation, biodeposition and 

biostabilisation (Gray and Elliott, 2009) are fundamental infaunal processes with implications for a 

range of ecosystem functions. These activities exert significant influence over benthic sedimentary 

geochemical environments through impacts on oxygen, pH and redox gradients (Lohrer et al., 2004; 

Stahl et al., 2006; Pischedda et al., 2007; Queiros et al., 2011; Birchenough et al., 2012), contaminant 

sequestration and release (Teal et al., 2009) and sediment granulometry (Montserrat et al., 2009), 
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biomodification processes affect bacterial activity and composition (Mermillod-Blondin, 2011; 

Gilbertson et al., 2012), carbon (Kristensen, 2001) and nitrogen cycling (Gilbert et al., 1998; Emmerson 

and Raffaelli, 2000). As with the nutrient fluxes discussed above, there are positive relationships 

between species richness and sediment oxygenation/sediment mixing, as indicated by the depth of the 

redox potential discontinuity layer (Waldbusser et al., 2004; Godbold and Solan, 2009). Waldbusser et 

al. (2004) also observed that the variability of the oxygen flux was reduced in the multispecies 

treatment, indicating that richness may also stabilize certain ecosystem functions. Both Waldbusser et 

al. (2004) and Godbold and Solan (2009) suggest that the positive influence of species richness on 

ecosystem function was again a product of identity effects mediated through functional traits, and that 

higher levels of biodiversity reduce the relative influence of abiotic factors (Godbold and Solan, 2009). 

2.1.6. Conclusions for operational requirement 1 

The evidence for BEF relationships within different functions and for all biological components has 

been summarized in Table 3. Biodiversity and ecosystem function relationships, stemming from both 

taxonomic and functional diversity measures, were demonstrated in the literature for several functions 

and biological components. The vast majority of the reported relationships were positive. However, not 

all components or functions were involved, with notable knowledge gaps that might inhibit the 

development of mechanisms that could convert biodiversity measures to holistic and realistic surrogates 

of ecosystem function: this may ultimately prevent the application of BEF relationships for practical 

monitoring roles. 
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Table 3. Biodiversity and ecosystem function relationship evidence summary table for the biological components of microbes, phytoplankton, zooplankton, 

macroalgae, angiosperms, benthic invertebrates, fish and cephalopods. 

Ecosystem process  Ecosystem function 
Biological component with BEF 

relationship evidence  

Biodiversity 

mechanism 

underpinning BEF 

relationship 

Additional observations 

Biomass production  

Primary productivity 

Phytoplankton1 
Identity + 

complementarity 

Measuring biodiversity problematic 

Macroalgae2 
Identity > 

complementarity 

Both species and functional richness 

Angiosperms – genetic diversity3 
Not known 

 

Particularly important during disturbance/stress 

Angiosperms – species diversity4 
Identity (species 

only) 

Tropical and Baltic studies only4 

Secondary productivity 

Microbes5 Not known Measuring biodiversity problematic 

Benthic invertebrates6 
Identity > 

complementarity 

Meiofaunal evidence sparse 

Organic matter 

transformation 

Organic matter 

decomposition and 

removal 

Microbes7 Not known One study only 

Meiofauna8 Not known Conflicting evidence 

Benthic macro-invertebrates9 Identity One study only 

Import/export of 

organic matter 
No evidence 

  

Ecosystem 

metabolism 

Oxygen consumption 

and carbon 

mineralization 

No evidence 

 The dominant influence of abiotic factors for some of these ecosystem functions 

may suggest that BEF relationships have little influence and may explain the 

absence of dedicated studies for these ecosystem functions.  

Oxygen production No evidence   

Nutrient cycling 

Denitrification No evidence    

Nitrification No evidence   

Nitrogen fixation No evidence   
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Exchange of limiting 

nutrients 

Phytoplankton10 
Complementarity 

(facilitation) 

Limited evidence base 

Macroalgae11 Complementarity Additional trophic levels modified the BEF relationship12 

Angiosperms13 - Genetic diversity 

Benthic invertebrates14 
Identity > 

complementarity 

Both species and functional richness19 

Fish15 Identity Evidence from a freshwater and tropical system15 

Physical  

environment 

modification  

Bioturbation Benthic invertebrates14 & 16 Identity Reduced variability with richness also documented17 

Reef building Angiosperms – genetic diversity18 Not known Conflicting evidence from normal and disturbed conditions 

Water velocity, particle 

flux and sedimentation 
 No evidence 

  

 

References 
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4 Terrados et al., 1998; Duarte et al., 2000; Gustaffsson and Bӧstrom, 2011 

5 Danovaro and Pusceddu 2007; Langenheder et al., 2010 

6 Duffy et al., 2003; Duffy et al., 2005; France and Duffy, 2006 ; Gorman et al., 2008; Harvey et al., 2013; Hensel and Silliman, 2013  

7 Danovaro and Pusceddu, 2007 

8 Danovaro et al., 2008; Pusceddu et al., 2014 

9 Solan et al., 2004; Godbold et al., 2009; Queirós et al., 2011; Hensel and Silliman, 2013 10 Ptacnik et al., 2008 

11 Grififn et al., 2009; Bracken and Stachowicz, 2006 

12 Reynolds and Bruno, 2012 

13 Hughes et al., 2009 
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The lack of evidence for positive BEF relationships could partly be due to a lack of studies investigating 

specific functions (e.g., oxygen production/consumption and carbon mineralization) or specific 

components (e.g., zooplankton, fish, cephalopods, seabirds and mammals in secondary production). In 

some cases, the evidence supporting positive BEF relationships was sparse or inconsistent (e.g., large 

variability in the response of the relationships between meiofaunal biodiversity and secondary 

production), with limited representativity of the geographic area (e.g., positive relationship between 

angiosperm species diversity and primary production was available for tropical and Baltic areas only) 

or the marine habitat (e.g., nutrient recycling and fish diversity in freshwater). Methodological 

influences were due to: 1) the small number of species typically used in BEF experiments (see 

Stachowicz et al. 2007); 2) the definition and number of ecosystem functions used (few studies are 

multi-functional); 3) the use of random or realistic biodiversity gradients; 4) the type of experiments 

(laboratory, mesocosm or field trials); 5) experimental duration; 6) spatial replication, 7) an absence of 

the simultaneous testing of abiotic factors, and 8) the number of trophic levels included (see below). 

These all contributed to occasionally over-powering contextual dependency, further complicating the 

determination of over-arching BEF relationships. 

In several cases, trophic interactions added complexity and ambiguity to BEF relationships, preventing 

clear generalizations between studies. As well as BEF relationships changing the availability of 

functional products within an ecosystem, biodiversity itself can directly influence trophic dynamics. As 

food web size increases (measured by the number of species) the number of feeding links per species 

(linkage density) also increases (Christensen and Pauly, 1993). This increases the abundance of prey 

available to predators in species rich food webs and may also have implications for redundancy within 

the system. Therefore, food webs with higher biodiversity may both increase in overall available 

resource and have a higher connectivity between trophic levels allowing for more routes for the 

movement of these resources. For example, Finke and Denno (2004), Hillebrand and Cardinale (2004), 

Spivak et al. (2007), O’Gorman et al. (2008), Edwards et al. (2010), Reynolds and Bruno (2012) and 

Hensel and Silliman (2013) all found that changes in species richness at differing trophic levels also 

induced structural and functional changes in adjoining levels. Changes in both the resource distribution 
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within a food web (via BEF boosted functions) and the structural changes associated with diversity 

changes alone might induce or modify ‘trophic cascades’, thereby complicating the expression of 

biodiversity induced changes to ecosystem functioning. In contrast, Borer et al. 2005 and O’Connor 

and Bruno (2009) did not observed trophic changes with species richness. The meta-analysis of 

terrestrial and marine studies by Borer et al. 2005 indicated that predator and herbivore taxonomy and 

physiology were more influential in stimulating cascades than richness (i.e. identity effects). The 

complexity of both trophic dynamics and BEF relationships make it particularly difficult to predict 

overall ecosystem functioning with increasing biodiversity in one or multiple biological 

components/trophic levels (Snelgrove et al., 2014). On balance, there are many studies to support the 

BEF premise that biodiversity does influence ecosystem function. Negative relationships were rarely 

evident or reported when compared with positive relationships. 

2.2. Operational requirement 2: what biological components are required to represent 

biodiversity within a BEF relationship? 

Biodiversity is routinely represented and deconstructed into measureable, manageable and meaningful 

components. Biodiversity assessments often focus on specific components (e.g., benthic infauna, 

angiosperms, and fish) which are assumed to be representative or proxies for the biodiversity of the 

ecosystem as a whole. Measuring a component of the system is usually easier and more cost effective 

than measuring the overall system biodiversity, considering also that the expertise of the researchers 

undertaking the assessment is often limited to one or few biological components. Translating BEF 

relationships into workable monitoring applications requires that the biodiversity components selected 

are also relevant to the given BEF relationship. It is therefore necessary to identify which biological 

components are required to represent biodiversity within a given BEF relationship of interest. For 

example, the use of angiosperms alone for estimating total regional primary production will be 

inadequate unless phytoplankton and macroalgae can also be combined, as they can significantly 

contribute to this function. It is therefore necessary to establish: 1) what biological components are 

needed to be selected to represent biodiversity for assessing a particular ecosystem function, and 2) 

what is their relative importance in influencing and contributing to the overall functional output. 
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By providing a framework for contextualizing individual biological components within multi-

component systems, Table 1 aids in the selection of the required biological components and practical 

application of BEF relationships into monitoring programmes. This is a simplistic attempt to examine 

functional output by biological component that does not include the interactions between biological 

components and functions (e.g., the availability, routes or processes that the products of a certain 

function are subsequently used within). It indicates that value may stem from indicating which 

biological components should be prioritized in biodiversity measurement for use in operationalized 

BEF monitoring (assuming a BEF exists for a specific component within the context of a specific 

function). In addition, these results, in combination together with the gaps in BEF evidence highlighted 

above for certain biological components and functions, indicate research priorities to allow the 

appropriate assessment of ecosystem functioning at the regional level. For example there is a lack of 

studies examining the microbe, phytoplankton and zooplankton assemblages, which, according to Table 

1, may have a primary contribution to several ecosystem functions.  

2.2.1. Conclusions for operational requirement 2 

The scoring of the biological components indicates that the large BEF evidence gaps align with several 

of the more functionally important components. For example, microbial processes generating primary 

and secondary production, phytoplankton translocation of organic matter, zooplankton secondary 

production and the physical engineers of habitats by benthic invertebrates. Hence for many of the main 

ecosystem functions, there is insufficient evidence for enough contributing biological components to 

adequately represent ‘biodiversity’ in many BEF relationships. The approach in Table 1 needs further 

development to provide a confident ‘look-up’ tool for practical applications using BEF relationships.  

2.3. Operational requirement 3: can the biodiversity of the selected biological components be 

measured easily?  

Having selected the appropriate biological components for a given BEF relationship of interest, 

monitoring methodologies require that biodiversity of those components can be assessed and expressed 

in compatible units. Measures of biodiversity used in most reviewed studies appear straightforward at 

the macroscopic scale (e.g. macrofaunal species richness) and have tangible relationships with several 
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ecosystem functions. However, defining and measuring biodiversity in consistent and meaningful units 

for the microscopic biological components, such as the microbial assemblages, and at the genetic scale, 

poses significant challenges. For example, most of the prokaryotes cannot be identified by cultivation-

based approaches but require molecular analyses (16S rRNA genes). Recently, the transition from 

Sanger sequencing to the next generation of high throughput sequencing technologies has opened new 

horizons in exploring the biodiversity of prokaryotic assemblages (Giovannoni and Stingl 2005; Sogin 

et al., 2006; Roesch et al., 2007; Caporaso et al., 2010). Next generation sequencing technologies 

applied to 16S rRNA genes have not only increased the current databases, but also allows the 

identification of rare bacterial taxa for which ecological significance is even more uncertain than that 

of the dominant taxa (Sogin et al., 2006; Gobet et al., 2012).  

Overall, applications incorporating BEF relationships require that the biodiversity measures of the 

biological components selected are consistent, cost-effective to monitor and calculate, and mechanisms 

to control the estimate bias associated with sampling limitations are in place. It is clear that the working 

monitoring tools, based on BEF relationships, will potentially span several biological components and 

that this must ultimately be represented as comparable and easily obtained measures of biodiversity. 

The difficulty in defining biodiversity units within functionally important components, such as 

microbes, not only prevents the development of practical BEF-based applications, but also compromises 

the development of the underlying evidence base. Furthermore, insufficient knowledge is available on 

the other measures tiers of biodiversity, such as genetic or guilds, to establish the most appropriate 

measure of biodiversity for the combined components. 

2.5. Operational requirement 4: how does biodiversity generate ecosystem function relationships? 

Depending on the underlying BEF relationship mechanism, standard units used to describe structural 

elements of biodiversity may not have the most direct relationship with specific functions and therefore 

may require expression as alternative measures of biodiversity. For example, BEF relationships 

underpinned by identity effects are often irregular (similar to riveted BEF models) when maintained in 

structural biodiversity units. In this situation, taxonomic units may benefit from translation into 

functional diversity using traits-based analysis, such as Biological Traits Analysis (e.g. Bremner, 2008), 
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into more standardized units that have a more uniform and linear relationship with ecosystem 

functioning. For BEF relationships emerging from complementarity, direct (taxonomic) measures of 

biodiversity, such as species richness, may be sufficient to express the influence of biodiversity. 

Therefore, operational use of BEF relationships requires: 1) that the mechanism of delivery for each 

BEF/biological component combination is known, and 2) that the units used to express biodiversity best 

represent the mechanisms that underpin positive BEF relationships. 

Unlike many of the terrestrial studies where complementarity is prevalent (Cardinale et al., 2007), 

positive marine BEF relationships examined in the marine environment (this study and others, e.g. 

Stachiwicz et al., 2007; Cardinale et al., 2012; Gamfeldt et al., in press) are mostly driven by identity 

effects (Table 3). In many studies, the increased functional rates observed were mostly ascribed to the 

presence of particular species (and their associated functional abilities or traits), rather than to an 

increase in species diversity (e.g. richness) per se. As a result, functional diversity has been used on 

several occasions within BEF research (e.g. through Biological Traits Analysis, BTA) (Emmerson and 

Raffaelli, 2000; Emmerson et al., 2001; Bolam et al., 2002; Godbold and Solan 2009; Harvey et al., 

2013). When compared with species richness, the expression of biodiversity as functional diversity has 

often provided a better relationship with ecosystem functionality (Griffin et al., 2009). However, despite 

this, identity effects were still apparent in some of these studies (Norling et al., 2007; Griffin et al., 

2009), suggesting that trait-based analysis is insufficient to fully capture the underlying properties that 

generate identity effects. Roles are often repeated across species within assemblages, suggesting that 

different species differ in either their performance or influence. For example, Törnroos et al. (2014) 

found that 66% of all of the possible traits measured in marine benthic macrofaunal species (in Northern 

Europe) were still expressed despite a reduction in species richness from 151 to 6 taxa, indicating that 

most traits (hence functional roles) are shared and categorical descriptions of species role are replicated 

within natural assemblages. This suggests that identity effects are not just an expression of the species 

functional role, as assessed with BTA, but also ‘role performance’ and/or ‘role influence’ are relevant 

in determining the species contribution to the overall functioning of the system. The rate, efficiency or 

influence of a particular role is not coded within BTA, and this is understandable considering how the 
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performance of any species can change depending on numerous factors including age, abundance, 

habitat, community composition and environmental conditions (Queiros et al., 2011).  

Despite the difficulty of attributing species with both categorical functional roles (e.g. BTA) and 

quantitative information of role performance or influence, these approaches demonstrate a greater 

capability to detect and compensate for identity effects in BEF relationships, thus allowing ecosystem 

function to be estimated from species information. Furthermore, species providing disproportionate 

contributions to overall functionality can be identified from structural community data rather than from 

functional response experimentation. Knowing when and which species are functionally important 

allows for focused species-based monitoring and management. Furthermore, if the information on role, 

performance/influence and pressure sensitivity of species can be combined, it should also be possible 

to model, and therefore predict, the vulnerability of functionally important species and the expected loss 

of ecosystem functionality along a realistic gradient of species loss.  

2.4. Operational requirement 5: what proportion of the overall variance of a given function is 

explained by biodiversity? 

Although a BEF relationship may be present for a particular function, there is also a need to determine 

the contribution made by biodiversity to the total expression of a particular ecosystem function. It is 

possible to detect a BEF relationship (operational requirement 1) yet have it only explain a very small 

proportion of the functional variance because other factors, such as abiotic variables, actually dominate 

the functional rates (Figure 3). For BEF-based monitoring, the contribution of biodiversity to 

functioning must be sufficiently large to be detected above the influence of abiotic factors, or the relative 

biotic and abiotic variability needs to be understood. 
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Figure 3. Representation of overall capacity for a single ecosystem function as a composite of three 

equally important contributing factors. Hypothetical contribution of each factor show in red. 

This review shows that studies rarely measure or consider the magnitude of the biodiversity influence 

on ecosystem functions compared to other abiotic or biotic factors (Figure 3). Hence it is not possible 

to determine the overall importance of operationalized BEF measures within the total ecosystem 

functioning observed. Where abiotic factors have been also considered, it was clear that these may 

modify the BEF relationship and have their own direct influence on functional rate (Biles et al., 2003; 
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Godbold and Solan, 2009; Bulling et al., 2010; Queiros et al., 2011). As such, the effects of biodiversity 

may be of secondary importance when compared to the influence of other abiotic and biotic drivers of 

ecosystem function (Goldbold, 2012) and may also be substantially transformed under changing abiotic 

regimes (Gamfeldt et al., in press). The practical application using BEF relationships require that the 

contribution of all of the factors (both biotic and abiotic) to ecosystem functioning are quantified and 

any interactions between factors are known and can be compensated for.  

The influence of biodiversity on ecosystem functioning is further complicated as different functions 

will interact in an ecosystem, hence an increase in the functional output within one ecosystem function 

may change the availability of resources or substrate for use in other ecosystem functions. At the same 

time, this ‘spill-over’ enhancement effect can be modified by resource availability, with scarce or 

limited resources likely generating the greatest spill-over augmentation. For example, an increase in 

nitrogen fixation will also enhance primary and secondary production locally, the potential 

enhancement or ‘spill-over’ in this case being determined by the amount of nitrogen fixed and the 

existing availability of nitrogen locally. In contrast, dissolved oxygen for respiration may already be 

sufficiently available from the atmospheric input that further biological inputs induce little or no 

functioning benefit, e.g. as in eutrophication. It is also possible that the excessive supply of functional 

product resources may in fact become detrimental to some adjoining trophic levels. For example, the 

metabolic production of ammonium may benefit autotrophs but potentially be toxic to heterotrophs. 

Furthermore, some functional products may be in a form that is unavailable for subsequent reprocessing. 

Phytoplankton biomass is rapidly consumed by the zooplankton, however, the biomass produced in 

seagrass beds is often high in refractory carbon and rarely consumed by secondary producers directly 

(Kennedy and Björk, 2009).  

The interactions outline above increase the difficulties in obtaining accurate predictions about the value 

of BEF-induced functional spill-over to other biological components/trophic levels. With regard to 

practical application of BEF relationships and meaningful reporting, these interactions may complicate 

or overwhelm the response of individual ecosystem functions to biodiversity. However, considerations 
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of resource demand and functional spill-over does provide a framework for putting BEF relationships 

within separate ecosystem functions and biological components into a multicomponent perspective. 

3. Conclusions 

Five important considerations were identified for the practical application of BEF relationships in 

monitoring (i.e. operationalization), however the information required for immediate use is currently 

lacking and therefore prevents wide-spread implementation of BEF-based functional monitoring. This 

review reported many positive and some negative relationships within many biological components, 

habitat and ecosystem functions. Null relationships were also reported. The consistency of the positive 

and negative relationships was often low which complicates universal acceptance and confident use of 

BEF relationships within monitoring application. Equally, some biological components and functions 

have received little or no investigation. There was a notable shortage of studies examining BEF 

relationships within microbial, phytoplankton, zooplankton, fish, cephalopod, seabird and marine 

mammal components, which is most likely explained by methodological constraints. The benthic flora 

and fauna have received the greatest amount of BEF research effort and as such, there is more scope for 

trialling operationalized BEF-based monitoring within these systems - other habitats will probably 

remain dependent on direct measures of functional processes for the time being. The other significant 

information shortage is on the relative contribution of biotic and abiotic effects on functioning for 

almost all biological components and ecosystem functions. Without this information it is not possible 

to contextualize the influence of BEF relationships for overall functional expression.    

Although there are significant short-comings of the evidence for BEF relationships in many biological 

components and the interactions between biological components and ecosystem functions, e.g. trophic 

cascades and functional spill-over. Evidence is also lacking for the value of biodiversity per se in 

ecosystem functional responses, the approach shows promise as a cost-effective (especially when 

structure measures of biodiversity are already being collected) and sensitive surrogate measure of a 

substantial element of ecosystem functioning. The use of BEF relationships represents the ability to 

examine ecosystem functions via the species-based apparatus of functional delivery, for example, the 

genotypes, individuals, species and assemblages of ecosystems, rather directly measure ecosystem 
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functions. Furthermore, as long as the appropriate biological components are sampled, functional 

surrogates derived from biodiversity should be able to provide proxy information on multiple functions 

simultaneously unlike direct measures on single functions. Once the underlying evidence is in place, a 

methodology using biodiversity-based estimates of ecosystem function is likely to be cost-effective and 

complementary to other forms of monitoring (especially as components of biodiversity are routinely 

sampled for several other purposes). Furthermore, it should also be theoretically possible to combine 

existing information on the sensitivity of species with BEF relationships so that predictions of 

biodiversity-induced ecosystem functioning can be generated from realistic scenarios of species loss. 

This approach might be particularly informative for relationships underpinned by identity effects and 

hence a reduced number of highly influential species. There is also the potential for the wide-scale 

identification of species with strong identity effects for use as indicator species and functionally-

relevant surrogates of total biodiversity with BEF relationships. This may reduce the need for full 

enumeration of the contributing biological components or initial translation of biodiversity into 

functional diversity units, thereby potentially reduce the cost of operationalizing BEF relationships. 

Despite the current lack of sufficient evidence to support each of the operational requirements described 

above, it is still possible to establish a protocol highlighting how BEF relationships might contribute 

within a realistic ecosystem function monitoring framework (Figure 4). Figure 4 suggests a process by 

which 1) the initial functionality requirement is divided into constituent functions, 2) biodiversity is 

sampled, 3) the biodiversity is expressed as comparable and functionally-relevant units, 4) biodiversity 

is combined with other important contributors of the rate of ecosystem function (i.e. abiotic influences), 

and 5) estimated ecosystem functions are recombined into overall assessments of ecosystem 

functionality. Although the currently available information is insufficient for implementing this 

protocol in practice, it constitutes a conceptual framework that will stimulate and direct future work 

focusing on developing operational applications for BEF relationships.  

Until the significant knowledge gaps described above are filled, BEF-based functional monitoring 

remains highly attractive yet unachievable. The greater need for the inclusion of functional 

considerations within wide-spread marine monitoring and assessment, (for example the MSFD), 
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without a proportional increase in resources to deliver them, will hopefully promote BEF research and 

its adoption within useful practical applications.
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1 

Functionality deconstructed into 

individual ecosystem functions.  

 

Select relevant biological 

components for each ecosystem 

function (Table 1): 

 Likely functional 

contribution 

 BC1 BC2 BC3 

F1 0.3 0.7 0.0 

F2 0.0 0.1 0.9 

F3 0.8 0.0 0.2 

F = ecosystem function 

BC = biological component 

2 

Sample data: 

F1 BC1 BC2 

Richness 9 5 

Abundance 100 300 

 

If required, convert structural 

biodiversity measures into other 

functional relevant units (e.g. traits 

for identity effect compensation): 

F1 BC1 BC2 

FBU 5 3 

Abundance 100 300 

FBU = functional biodiversity units 

3 

Adjust according to other factors 

using comparable functioning 

units: 

 

 

 Biod Abd Abio Scaled FU 

BC1 5 7 2 12 

BC2 1 9 5 15 

FU = functional units 

 

4 

Combine BCs for overall 

assessment of ecosystem function 

output: 

 Scaled FU 

 BC1 BC2 Total 

F1 12 15 27 

 

Combination of comparable 

functional measures for ecosystem 

‘functionality’ with compensation 

for potential spill-over: 

 

 F1 F2 F3 MF (Σ F) 

Site A 27 45 5 2505 

Site B 2900 100 12 3012 

MFU = multifunction units 

Output ecosystem functionality (multi-metric) 

Figure 4. Potential framework for the practical application of BEF relationships within marine ecosystem functionality monitoring. 



47 

 

Future work must strive to detail BEF relationships from more ecosystem functions and especially from 

under-reported biological components. Many of the biological components that potentially contribute 

the most to functional delivery have received the least amount of attention, for example, because of the 

difficulty in measuring and defining biodiversity, which also needs addressing if BEF research and 

useable working applications are to develop. Further work is also required to understand the influence 

of biotic and abiotic on ecosystem functions and the interaction between functions (mutual inducement 

and spill-over), in order to possibly generalize them for operational purposes. Detailed work is required 

to understand both the functional form of BEF relationships over realistic spatial and temporal gradients 

of biodiversity as well as the impact of scale. Although they have not been addressed in detail in this 

review, the shortcomings of Biological Trait Analysis to fully compensate for identity effects need to 

be better understood and the role performance and/or influence needs to be better represented within 

these tools for the translation of identity effects. 
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Glossary of common biodiversity and ecosystem functioning terms 

Biodiversity: The variability among living organisms from all sources including inter alia, [terrestrial], 

marine [and other aquatic ecosystems] and the ecological complexes of which they are part; cf. ‘includes 

diversity within species, between species and of ecosystems’ (Article 2, Convention on Biological Diversity 

1992: www.cbd.int/convention/text/default.shtml). 

Biological (or biodiversity) components: groupings of species, separated by distinct functional, taxonomic 

and/or habitat boundaries. These components are practical subdivisions of biodiversity. Eleven biodiversity 

components have been used within this review: microbes, phytoplankton, zooplankton, angiosperms, 

macroalgae, benthic invertebrates, fish, cephalopods, marine mammals, birds and reptiles. 

Biological traits analysis: an analysis that uses a series of life history, morphological and behavioural 

characteristics of species present in assemblages to indicate aspects of their ecological functioning (Bremner 

et al., 2006). 

Complementarity: see transgressive over-yielding. Species perform better in diverse communities when 

compared to monoculture due to facilitation and niche partitioning in shared resource use. Contributes to 

more efficient acquisition of limiting resources and therefore higher productivity. 

Ecosystem functioning: This relates to rate processes at the ecosystem level, cf. ecosystem structure which 

is the magnitude of ecosystem components at one time; all levels of biological organisation from the cell to 

the ecosystem have structural and functional properties whereas ecosystem functioning only relates to the 

highest level. 

Ecosystem functions: the physical, chemical and biological processes that transform and translocate energy 

or materials in an ecosystem are termed ecosystem functions (Naeem, 1998; Paterson et al. 2012).   

Ecosystem process: 

Identity effects: a small number of species dominates functionality. Typically reflected by non-transgressive 

over-yielding (Table 1a and 1b). 

Non-transgressive over-yielding: a diverse assemblage perform better than a weighted average of the 

component species (Table 1a and 1b). Commonly related to identity effects. 

Production/Productivity: biomass production is often expressed as production or productivity, these two 

terms being often used as synonyms (e.g. McLusky and Elliott, 2004; Scherer-Lorenzen, 2005), and 

expressing the units of biomass produced per unit area per unit time (e.g. grams of Carbon m-2 yr-1), with the 

production efficiency (or biomass turnover rate) being measured by the P:B ratio (where P is production and 

B is mean standing biomass; e.g. in yr-1 units; McLusky and Elliott, 2004).  

Selection effects/sampling effects: diversity effects are caused by the greater chance of one or a few 

dominant, high-biomass species being present in the polyculture. Related to identity effects. 

http://www.cbd.int/convention/text/default.shtml
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Trait diversity: species defined in terms of their ecological roles. The concept of functional trait diversity is 

based on the assumption that with increasing trait dissimilarity among species the diversity in resource use 

strategies increases as well and species overlap along resource axes decreases. 

Transgressive over-yielding: diverse assemblages perform better than the best performing species in 

monoculture (Table 1a and 1b). Also considered a product of complementarity. 

 


