300 research outputs found
Presumed optic disc melanocytoma in a young Nigerian: a diagnostic challenge
Optic disc melanocytoma (ODM) is a rare, benign, deeply pigmented ocular tumor arising from melanocytes within the optic disc or from any part of the uvea. It occurs more in dark skinned individuals and females. We report a 17‑year‑old female who presented to our outpatient department with a history of poor distant vision from childhood, worse in the right eye. Ocular examination revealed visual acuity of 6/36 and 6/18 in the right and left eyes, respectively, which improved to 6/9 bilaterally with a pinhole. There was a relative afferent pupillary defect in the right eye, and a posterior segment examination of same eye showed a raised pigmented optic disc lesion occupying the inferior two-thirds of the optic disc and obscuring the lower disc margin. Both the anterior and posterior segments of the left eye were normal. A diagnosis of presumed ODM was made. Spectacles were prescribed, and the patient was counseled on regular follow‑up to monitor progression. ODM should be considered in patients presenting with a pigmented optic disc lesion. Regular follow‑up with fundus photography is advocated.Keywords: Melanocytoma, optic disc, pigmented ocular tumo
Application of best estimate plus uncertainty in review of research reactor safety analysis
To construct and operate a nuclear research reactor, the licensee is required to obtain the authorization from the regulatory body. One of the tasks of the regulatory authority is to verify that the safety analysis fulfils safety requirements. Historically, the compliance with safety requirements was assessed using a deterministic approach and conservative assumptions. This provides sufficient safety margins with respect to the licensing limits on boundary and operational conditions. Conservative assumptions were introduced into safety analysis to account for the uncertainty associated with lack of knowledge. With the introduction of best estimate computational tools, safety analyses are usually carried out using the best estimate approach. Results of such analyses can be accepted by the regulatory authority only if appropriate uncertainty evaluation is carried out. Best estimate computer codes are capable of providing more realistic information on the status of the plant, allowing the prediction of real safety margins. The best estimate plus uncertainty approach has proven to be reliable and viable of supplying realistic results if all conditions are carefully followed. This paper, therefore, presents this concept and its possible application to research reactor safety analysis. The aim of the paper is to investigate the unprotected loss-of-flow transients "core blockage" of a miniature neutron source research reactor by applying best estimate plus uncertainty methodology. The results of our calculations show that the temperatures in the core are within the safety limits and do not pose any significant threat to the reactor, as far as the melting of the cladding is concerned. The work also discusses the methodology of the best estimate plus uncertainty approach when applied to the safety analysis of research reactors for licensing purposes
The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---
We observed the North-East (NE) Limb toward the center region of the Cygnus
Loop with the ASCA Observatory. We found a radial variation of electron
temperature (kTe) and ionization timescale (log(\tau)) whereas no variation
could be found for the abundances of heavy elements. In this paper, we
re-analyzed the same data set and new observations with the latest calibration
files. Then we constructed the precise spatial variations of kTe, log(\tau),
and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found
a spatial variation not only in kTe and in log(\tau) but also in most of heavy
elements. As described in Miyata et al. (1994), values of kTe increase and
those of log(\tau) decrease toward the inner region. We found that the
abundance of heavy elements increases toward the inner region. The radial
profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs,
where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are
constant. On the contrary, inside of 0.9 Rs, abundances of these elements are
20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of
kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal
rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump
structure was the possible evidence for the pre-existing cavity produced by the
precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta
was roughly 4\Msun. We then estimated the main-sequence mass to be roughly
15\Msun, which supports the massive star in origin of the Cygnus Loop supernova
remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Artificial and Natural Radioactivity Measurements and Radiation Dose Assessment in the Vicinity of Ghana Nuclear Research Reactor-1 (GHARR-1)
Radioactivity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, <sup>40</sup>K and <sup>137</sup>Cs in soil samples and water sources around the Ghana Research Reactor-1 (GHARR-1) and the immediate surroundings have been measured using gamma spectrometry. The primary aim of the study was to establish baseline radioactivity levels in the environs of GHARR-1. The average activity concentration of <sup>226</sup>Ra, <sup>232</sup>Th, <sup>40</sup>K and <sup>137</sup>Cs were 22.3 ± 1.12 Bq kg<sup>-1</sup>, 49.8 ± 1.60Bq kg-1, 99.60 ± 5.81 Bq kg<sup>-1</sup> and 1.48 ± 0.25 Bq kg<sup>-1</sup> for soil and 0.60 ± 0.11 Bq l<sup>-1</sup>, 2.13 ± 0.21 Bq l<sup>-1</sup>, 10.75 ± 0.84 Bq l<sup>-1</sup> and 0.47 ± 0.05 Bq l<sup>-1</sup>for the water, respectively. The <sup>226</sup>Ra and <sup>232</sup>Th concentrations compare quite well with world averages, whilst the <sup>40</sup>K concentration was lower than the world average. The levels of <sup>137</sup>Cs observed in the samples are within the range of ‘background’  concentrations. The estimated average annual effective doses from external exposure to soil and ingestion of water samples were calculated to be 0.06 mSv and 0.53 mSv, respectively. The estimated outdoor  external gamma dose rate measured in air ranged from 20-430 nGy h<sup>-1</sup> with an average value of 100 nGy h<sup>-1</sup>, which is higher than the world average value of 59 nGy h<sup>-1</sup>. In the case of water samples, the average value was higher than the guidance level of 0.1 mSv y<sup>-1</sup>, as recommended by the European Union and the World Health Organization
Production in Two-Photon Processes at TRISTAN
We have carried out an inclusive measurement of production
in two-photon processes at TRISTAN. The mean was 58 GeV and the
integrated luminosity was 199 pb. High-statistics samples were
obtained under such conditions as no-, anti-electron, and remnant-jet tags. The
remnant-jet tag, in particular, allowed us, for the first time, to measure the
cross sections separately for the resolved-photon and direct processes.Comment: 20 pages, Latex format, 4 figures and KEK-mark included. Table 1
revised. To be published in Phys. Lett.
Measurement of the forward-backward asymmetries for charm- and bottom-quark pair productions at =58GeV with electron tagging
We have measured, with electron tagging, the forward-backward asymmetries of
charm- and bottom-quark pair productions at =58.01GeV, based on
23,783 hadronic events selected from a data sample of 197pb taken with
the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are
and , which are consistent with the standard model
predictions.Comment: 19 pages, Latex format (article), 5 figures included. to be published
in Phys. Lett.
Measurement of the cross-section and forward-backward charge asymmetry for the b and c-quark in e+e- annihilation with inclusive muons at sqrt(s) = 58 GeV
We have studied inclusive muon events using all the data collected by the
TOPAZ detector at sqrt(s)=58 GeV with an integrated luminosity of 273pb-1. From
1328 inclusive muon events, we measured the ratio R_qq of the cross section for
qq-bar production to the total hadronic cross section and forward-backward
asymmetry A^q_FB for b and c quarks. The obtained results are R_bb =
0.13+-0.02(stat)+-0.01(syst), R_cc = 0.36+-0.05(stat)+-0.05(syst), A^b_FB =
-0.20+-0.16(stat)+-0.01(syst) and A^c_FB = -0.17+-0.14(stat)+-0.02(syst), in
fair agreement with a prediction of the standard model.Comment: To be published in EPJ C. 24 pages, 12 figure
- …