22 research outputs found

    Potassium limitation of forest productivity – Part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands

    Get PDF
    The extent of the potassium (K) limitation of forest productivity is probably more widespread than previously thought, and K limitation could influence the response of forests to future global changes. To understand the effects of K limitation on forest primary production, we have developed the first ecophysiological model simulating the K cycle and its interactions with the carbon (C) and water cycles. We focused on the limitation of the gross primary productivity (GPP) by K availability in tropical eucalypt plantations in Brazil. We used results from stand-scale fertilisation experiments as well as C flux measurements in two tropical eucalypt plantations to parameterise the model. The model was parameterised for fertilised conditions and then used to test for the effects of contrasting additions of K fertiliser. Simulations showed that K deficiency limits GPP by more than 50 % during a 6-year rotation, a value in agreement with estimations in K-limited eucalypt stands. Simulations showed a decrease of modelled canopy transpiration of around 50 % and a decrease in modelled water-use efficiency WUEGPP of 10 %. Through a sensitivity analysis, we used the model to identify the most critical processes to consider when studying K limitation of GPP. The inputs of K to the stands, such as the atmospheric deposition and weathering fluxes, and the regulation of the cycle of K within the ecosystem were critical for the response of the system to K deficiency. Litter leaching processes were of lower importance, since residence time of K in litter was low. The new forest K-cycle model developed in the present study includes multiple K processes interacting with the carbon and water cycles, and strong feedbacks on GPP were outlined. This is a first step in identifying the source or sink limitation of forest growth by K.</p

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2&nbsp;m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315&nbsp;cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean&nbsp;=&nbsp;3.0&nbsp;\ub1&nbsp;2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6&nbsp;\ub1&nbsp;2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7&nbsp;\ub1&nbsp;2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Sensitivity and uncertainty analysis of the carbon and water fluxes at the tree scale in<i>Eucalyptus</i>plantations using a metamodeling approach

    No full text
    Understanding the consequences of changes in climatic and biological drivers on tree carbon and water fluxes is essential in forestry. Using a metamodeling approach, sensitivity and uncertainty analyses were carried out for a tree-scale model (MAESPA) to isolate the effects of climate, morphological and physiological traits, and intertree competition on the absorption of photosynthetically active radiation (APAR), gross primary production (GPP), transpiration (TR), light use efficiency (LUE), and water use efficiency (WUE) in clonal Eucalyptus plantations. The metamodel predicting daily TR was validated using one year of sap flow measurements and showed close agreement with the measurements (mean percentage error = 11%, n = 2155). Simulations showed that APAR, GPP, and TR were very sensitive to the tree morphology and to a competition index representing its local environment. LUE and WUE were, in addition, very sensitive to the natural variability of the physiological leaf and root parameters. A maximum percentage error of 10% in these parameters leads to 18%, 17%, 16%, 9%, and 18% uncertainty for APAR, GPP, TR, LUE, and WUE, respectively. The uncertainties in TR were highest for the smallest trees. This study highlighted the need to take account of the spatial and temporal variability of tree traits and environmental conditions for simulations at the tree scale

    Modelling carbon and water balance of Eucalyptus plantations at regional scale: Effect of climate, soil and genotypes

    No full text
    Carbon and water budgets of forest plantations are spatially and temporally variable and hardly empirically predictable. We applied G’DAY, a process-based ecophysiological model, to simulate carbon and water budgets and stem biomass production of Eucalyptus plantations in São Paulo State, Brazil. Our main objective was to assess the drivers of spatial variability in plantation production at regional scale. We followed a multi-site calibration approach: the model was first parameterized using a detailed experimental dataset. Then a subset of the parameters were re-calibrated on two independent experimental datasets. An additional genotype-specific calibration of a subset of parameters was performed. Model predictions of key carbon-related variables (e.g., gross primary production, leaf area index and stem biomass) and key water-related variables (e.g., plant available water and evapotranspiration) agreed closely with measurements. Application of the model across ca. 27,500 ha of forests planted with different genotypes of Eucalyptus indicated that the model was able to capture 89% of stem biomass variability measured at different ages. Several factors controlling Eucalyptus production variability in time and space were grouped in three categories: soil, climate, and the planted genotype. Modelling analysis showed that calibrating the model for genotypic differences was critical for stem biomass prediction at regional scale, but that taking into account climate and soil variability significantly improved the results. We conclude that application of process-based models at regional scale can be used for accurate predictions of Eucalyptus production, provided that an accurate calibration of the model for key genotype-specific parameters is conducted

    Infuence of rubber trees on leaf-miner damage to coffee plants in an agroforestry system.

    No full text
    The coffee leaf-miner (CLM) (Leucoptera coffeella Guérin-Mèneville; Lepidoptera: Lyonetiidae), the main pest of coffee plants, occurs widely throughout the Neotropics where it has a significant, negative economic and quantitative impact on coffee production. This study was conducted in a rubber tree/coffee plant interface that was influenced by the trees to a varying degrees depending on the location of the coffee plants, i.e. from beneath the rubber trees, extending through a range of distances from the edge of the tree plantation to end in a coffee monocrop field. The most severe damage inflicted on coffee plants by the CLM (number of mined leaves) from April, which marks the start of the water deficit period, until September 2003 was in the zone close to the rubber trees, whereas the damage inflicted on plants in the monocropped field was comparable to that on coffee plants grown directly beneath the rubber trees, which received about 25-40 % of the available irradiance (Ir-available irradiation at a certain position divided by the irradiation received in full sunlight, i.e. in the monocrop). From May until July damage caused by the CLM nearly doubled in each month. In midwinter (July), the damage decreased perceptibly from the tree edge toward the open field. From September onward, with the rising air temperatures CLM damage in the coffee monocrop started to increase. Based on these results, we conclude that coffee plants grown in the full sun incurred the most damage only at the end of winter, with warming air temperatures. Coffee plants grown in shadier locations (25-40 % Ir) were less damaged by the CLM, although a higher proportion of their leaves were mined. The rubber trees probably acted as a shelter during the cold autumn and winter seasons, leading to greater CLM damage over a distance outside the rubber tree plantation that was about equal to the height of the trees. Future studies should attempt to relate leaf hydric potential to pest attack in field conditions. More rigorous measurements of shade conditions could improve our understanding of the relationship of this factor to CLM attack.Published online: 5 October 2013
    corecore