367 research outputs found

    The RMS Charge Radius of the Proton and Zemach Moments

    Full text link
    On the basis of recent precise measurements of the electric form factor of the proton, the Zemach moments, needed as input parameters for the determination of the proton rms radius from the measurement of the Lamb shift in muonic hydrogen, are calculated. It turns out that the new moments give an uncertainty as large as the presently stated error of the recent Lamb shift measurement of Pohl et al.. De Rujula's idea of a large Zemach moment in order to reconcile the five standard deviation discrepancy between the muonic Lamb shift determination and the result of electronic experiments is shown to be in clear contradiction with experiment. Alternative explanations are touched upon.Comment: 6 pages, 4 figures, final version includes discussion of systematic and numerical error

    Environmental changes and violent conflict

    Get PDF
    This letter reviews the scientific literature on whether and how environmental changes affect the risk of violent conflict. The available evidence from qualitative case studies indicates that environmental stress can contribute to violent conflict in some specific cases. Results from quantitative large-N studies, however, strongly suggest that we should be careful in drawing general conclusions. Those large-N studies that we regard as the most sophisticated ones obtain results that are not robust to alternative model specifications and, thus, have been debated. This suggests that environmental changes may, under specific circumstances, increase the risk of violent conflict, but not necessarily in a systematic way and unconditionally. Hence there is, to date, no scientific consensus on the impact of environmental changes on violent conflict. This letter also highlights the most important challenges for further research on the subject. One of the key issues is that the effects of environmental changes on violent conflict are likely to be contingent on a set of economic and political conditions that determine adaptation capacity. In the authors' view, the most important indirect effects are likely to lead from environmental changes via economic performance and migration to violent conflict. © 2012 IOP Publishing Ltd

    Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron

    Get PDF
    A new exclusion limit for the electromagnetic production of a light U(1) gauge boson {\gamma}' decaying to e^+e^- was determined by the A1 Collaboration at the Mainz Microtron. Such light gauge bosons appear in several extensions of the standard model and are also discussed as candidates for the interaction of dark matter with standard model matter. In electron scattering from a heavy nucleus, the existing limits for a narrow state coupling to e^+e^- were reduced by nearly an order of magnitude in the range of the lepton pair mass of 210 MeV/c^2 < m_e^+e^- < 300 MeV/c^2. This experiment demonstrates the potential of high current and high resolution fixed target experiments for the search for physics beyond the standard model.Comment: 4 pages, 7 figure

    Recoil polarization and beam-recoil double polarization measurement of \eta electroproduction on the proton in the region of the S_{11}(1535) resonance

    Get PDF
    The beam-recoil double polarization P_{x'}^h and P_{z'}^h and the recoil polarization P_{y'} were measured for the first time for the p(\vec{e},e'\vec{p})\eta reaction at a four-momentum transfer of Q^2=0.1 GeV^2/c^2 and a center of mass production angle of \theta = 120^\circ at MAMI C. With a center of mass energy range of 1500 MeV < W < 1550 MeV the region of the S_{11}(1535) and D_{13}(1520) resonance was covered. The results are discussed in the framework of a phenomenological isobar model (Eta-MAID). While P_{x'}^h and P_{z'}^h are in good agreement with the model, P_{y'} shows a significant deviation, consistent with existing photoproduction data on the polarized-target asymmetry.Comment: 4 pages, 1 figur

    High-precision determination of the electric and magnetic form factors of the proton

    Get PDF
    New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.Comment: 5 pages, 2 figures, published in Phys. Rev. Lett. v3: added references, updated text, color figure

    Reply to Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"

    Get PDF
    In arXiv:1108.3058v1 [nucl-ex], Arrington criticizes the Coulomb corrections we applied in the analysis of high precision form factor data (see Phys.Rev.Lett.105:242001, 2010, arXiv:1007.5076v3 [nucl-ex]). We show, by comparing different calculations cited in the Comment, that the criticism of the Comment neglects the large uncertainty of "more modern" TPE corrections. This uncertainty has also been seen in recent polarized measurements. We rerun our analysis using one of these calculations. The results show that the Comment exaggerates the quantitative effect at small Q^2.Comment: 1 page, 2 figure, To appear as a Reply Comment in Physical Review Letter

    The electric and magnetic form factors of the proton

    Get PDF
    The paper describes a precise measurement of electron scattering off the proton at momentum transfers of 0.003Q210.003 \lesssim Q^2 \lesssim 1\ GeV2^2. The average point-to-point error of the cross sections in this experiment is \sim 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low Q2Q^2 values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.Comment: 38 pages, 20 figures. Updated data files. PRC versio

    A Large-Scale FPGA-Based Trigger and Dead-Time Free DAQ System for the Kaos Spectrometer at MAMI

    Full text link
    The Kaos spectrometer is maintained by the A1 collaboration at the Mainz Microtron MAMI with a focus on the study of (e,e'K^+) coincidence reactions. For its electron-arm two vertical planes of fiber arrays, each comprising approximately 10 000 fibers, are operated close to zero degree scattering angle and in close proximity to the electron beam. A nearly dead-time free DAQ system to acquire timing and tracking information has been installed for this spectrometer arm. The signals of 144 multi-anode photomultipliers are collected by 96-channel front-end boards, digitized by double-threshold discriminators and the signal time is picked up by state-of-the-art F1 time-to-digital converter chips. In order to minimize background rates a sophisticated trigger logic was implemented in newly developed Vuprom modules. The trigger performs noise suppression, signal cluster finding, particle tracking, and coincidence timing, and can be expanded for kinematical matching (e'K^+) coincidences. The full system was designed to process more than 4 000 read-out channels and to cope with the high electron flux in the spectrometer and the high count rate requirement of the detectors. It was successfully in-beam tested at MAMI in 2009.Comment: Contributed to 17th IEEE Real Time Conference (RT10), Lisbon, 24-28 May 201
    corecore