195 research outputs found

    Elucidating the NuclearQuantum Dynamics of Intramolecular Double Hydrogen Transfer in Porphycene

    Get PDF
    We address the double hydrogen transfer (DHT) dynamics of the porphycene molecule: A complex paradigmatic system where the making and breaking of H-bonds in a highly anharmonic potential energy surface requires a quantum mechanical treatment not only of the electrons, but also of the nuclei. We combine density-functional theory calculations, employing hybrid functionals and van der Waals corrections, with recently proposed and optimized path-integral ring-polymer methods for the approximation of quantum vibrational spectra and reaction rates. Our full-dimensional ring-polymer instanton simulations show that below 100 K the concerted DHT tunneling pathway dominates, but between 100 K and 300 K there is a competition between concerted and stepwise pathways when nuclear quantum effects are included. We obtain ground-state reaction rates of 2.19×1011s−12.19 \times 10^{11} \mathrm{s}^{-1} at 150 K and 0.63×1011s−10.63 \times 10^{11} \mathrm{s}^{-1} at 100 K, in good agreement with experiment. We also reproduce the puzzling N-H stretching band of porphycene with very good accuracy from thermostatted ring-polymer molecular dynamics simulations. The position and lineshape of this peak, centered at around 2600 cm−1^{-1} and spanning 750 cm−1^{-1}, stems from a combination of very strong H-bonds, the coupling to low-frequency modes, and the access to ciscis-like isomeric conformations, which cannot be appropriately captured with classical-nuclei dynamics. These results verify the appropriateness of our general theoretical approach and provide a framework for a deeper physical understanding of hydrogen transfer dynamics in complex systems

    New data on armoured scale insects (Hemiptera, Coccoidea, Diaspididae) from the Azores Islands

    Get PDF
    This short communication presents new records of four species of armoured scale insects (Diaspididae) which were recently collected from the Azores Islands. Two of these species, indicated below by an asterisk, are here reported for the first time from these islands. Voucher specimens of these records are deposited in the Coccoidea Collection of the first author

    Assessing the spatiotemporal patterns and impacts of droughts in the Orinoco river basin using earth observations data and surface observations

    Get PDF
    Droughts impact the water cycle, ecological balance, and socio-economic development in various regions around the world. The Orinoco River Basin is a region highly susceptible to droughts. The basin supports diverse ecosystems and supplies valuable resources to local communities. We assess the spatiotemporal patterns and impacts of droughts in the basin using remote sensing data and surface observations. We use monthly precipitation (P), air temperature near the surface (T2M), enhanced vegetation index (EVI) derived from Earth observations, and average daily flow (Q) data to quantify drought characteristics and impacts. We also investigated the association between drought and global warming by correlating the drought intensity and the percentage of dry area with sea surface temperature (SST) anomalies in the Pacific (Niño 3.4 index), Atlantic (North Atlantic Index [NATL]), and South Atlantic Index [SATL]) oceans. We evaluate the modulating effect of droughts on the hydrological regime of the most relevant tributaries by calculating the trend and significance of the regional standardized precipitation index (SPI) and percentage area affected by dry conditions. El Niño events worsen the region’s drought conditions (SPI vs. Niño 3.4 index, r = −0.221), while Atlantic SST variability has less influence on the basin’s precipitation regime (SPI vs. NATL and SATL, r = 0.117 and −0.045, respectively). We also found that long-term surface warming trends aggravate drought conditions (SPI vs. T2M anomalies, r = −0.473), but vegetation greenness increases despite high surface temperatures (SPI vs. EVI anomalies, r = 0.284). We emphasize the irregular spatial-temporal patterns of droughts in the region and their profound effects on the ecological flow of rivers during prolonged hydrological droughts. This approach provides crucial insights into potential implications for water availability, agricultural productivity, and overall ecosystem health. Our study underlines the urgent need for adaptive management strategies to mitigate the adverse effects of droughts on ecosystems and human populations. The insights derived from our study have practical implications for developing strategies to address the impacts of droughts and ensure the protection of this ecologically significant region

    Measuring the Nonlinear Biasing Function from a Galaxy Redshift Survey

    Get PDF
    We present a simple method for evaluating the nonlinear biasing function of galaxies from a redshift survey. The nonlinear biasing is characterized by the conditional mean of the galaxy density fluctuation given the underlying mass density fluctuation, or by the associated parameters of mean biasing and nonlinearity (following Dekel & Lahav 1999). Using the distribution of galaxies in cosmological simulations, at smoothing of a few Mpc, we find that the mean biasing can be recovered to a good accuracy from the cumulative distribution functions (CDFs) of galaxies and mass, despite the biasing scatter. Then, using a suite of simulations of different cosmological models, we demonstrate that the matter CDF is robust compared to the difference between it and the galaxy CDF, and can be approximated for our purpose by a cumulative log-normal distribution of 1+\delta with a single parameter \sigma. Finally, we show how the nonlinear biasing function can be obtained with adequate accuracy directly from the observed galaxy CDF in redshift space. Thus, the biasing function can be obtained from counts in cells once the rms mass fluctuation at the appropriate scale is assumed a priori. The relative biasing function between different galaxy types is measurable in a similar way. The main source of error is sparse sampling, which requires that the mean galaxy separation be smaller than the smoothing scale. Once applied to redshift surveys such as PSCz, 2dF, SDSS, or DEEP, the biasing function can provide valuable constraints on galaxy formation and structure evolution.Comment: 23 pages, 7 figures, revised version, accepted for publication in Ap

    Material Futures:Design-led Approaches to Crafting Conversations in the Circular Economy

    Get PDF
    This paper explores the work in the area of Material Futures – undertaken by researchers at The Glasgow School of Art (GSA). We begin by presenting current debates within the textile sector and outline the challenges of the circular economy. The Scottish Government have established a £17 million fund to catalyse innovative approaches for the circular economy, which support closed-loop systems including collaboration, evaluation of different methods and future material ecologies. We discuss future material ecologies in two case studies in order to extrapolate the ways in which creative and participatory design approaches can be used to stimulate dialogue around the circular economy, broader environmental and economic issues and the socio-cultural implications. We identify six design principles for researchers and practitioners to consider when facilitating circular conversations and the evolving role of the textile designer. We go on to highlight the significance of design-led approaches in strengthening communication, promoting creative action and embedding collaborative ways of working. We conclude by making recommendations for future research and practice and how the insights might be expanded upon to support ethical, responsible and sustainable material futures

    The Role of Friction in Compaction and Segregation of Granular Materials

    Full text link
    We investigate the role of friction in compaction and segregation of granular materials by combining Edwards' thermodynamic hypothesis with a simple mechanical model and mean-field based geometrical calculations. Systems of single species with large friction coefficients are found to compact less. Binary mixtures of grains differing in frictional properties are found to segregate at high compactivities, in contrary to granular mixtures differing in size, which segregate at low compactivities. A phase diagram for segregation vs. friction coefficients of the two species is generated. Finally, the characteristics of segregation are related directly to the volume fraction without the explicit use of the yet unclear notion of compactivity.Comment: 9 pages, 6 figures, submitted to Phys. Rev.

    Characteristics and conditions of production of transient luminous events observed over a maritime storm

    Get PDF
    International audienceOn the night of 15/16 November 2007, cameras in southern France detected 30 transient luminous events (TLEs) over a storm located in the Corsican region (France). Among these TLEs, 19 were sprites, 6 were halos, and 5 were elves. For 26 of them, a positive “parent” cloud‐to‐ground lightning (P+CG) flash was identified. The peak current of the P+CG flashes for the sprites had an average value of 63 kA and had a maximum value of 125 kA. The flashes for the halos and the elves had average values of 272 and 351 kA, respectively, and they had maximum values of 312 and 384 kA, respectively. No TLEs were detected after negative CG flashes with very large peak currents. Among the 26 P+CG flashes, 23 were located in a stratiform region with reflectivity values lower than 45 dBZ. The CG flashes in this region were classified into two groups according to the time interval separating them from the following flash: one group with values less than 2 s and one with values greater than 2 s. About 79% of all CGs were produced in a sequence of at least two flashes less than 2 s apart. For 65.5% of the sequences, the first flash was positive with an average peak current of 73 kA, while the later +CG flashes in a sequence had much lower peak currents. Several triangulated sprites were found to be shifted from their P+CG flashes by about 10 to 50 km and preferentially downstream. The observations suggest that the P+CG flashes can initiate both sprites and other CG flashes in a storm

    Newfoundland Neogene sediment drifts: transition from the Paleogene greenhouse to the modern icehouse

    Get PDF
    This workshop brought together specialists from various fields to develop a drilling proposal to fill the "Oligo-Miocene Gap" that exists in our understanding of the functions of Earth's systems. We propose to establish the first continuous high-deposition record of the Oligo-Miocene through new International Ocean Discovery Program (IODP) drilling in the North Atlantic to allow the development of a continuous Neogene cyclostratigraphy and to enhance our knowledge of Oligo-Miocene ocean–ice–climate dynamics. The workshop was held in Heidelberg from 15 to 17 September 2014 funded by ESF (EARTHTIME EU), NSF, and the ECORD MagellanPlus Workshop Series Program. A total of 24 participants from six different countries (Australia, France, Germany, the Netherlands, United Kingdom, and United States) attended the workshop, including several early career stage researchers. We discussed certain aspects of Cenozoic paleoceanography and paleoclimate and how the gaps in the Oligo-Miocene could be filled using scientific drilling. The ultimate goal of the workshop (to submit a pre-proposal to IODP) was achieved (IODP Proposal 874-pre was submitted 1 October 2014). Our workshop consisted of overview presentations followed by self-selected breakout groups that discussed different topics and produced text and figures for the proposal. Here, we give a short overview of the major topics discussed during the workshop and the scientific goals presented in the resulting IODP pre-proposal
    • 

    corecore