7,919 research outputs found

    The Malarial Cachexia

    Get PDF
    n/

    Role of the exchange and correlation potential into calculating the x-ray absorption spectra of half-metallic alloys: the case of Mn and Cu K-edge XANES in Cu2_2MnM (M = Al, Sn, In) Heusler alloys

    Get PDF
    This work reports a theoretical study of the x-ray absorption near-edge structure spectra at both the Cu and the Mn K-edge in several Cu2_2MnM (M= Al, Sn and In) Heusler alloys. Our results show that {\it ab-initio} single-channel multiple-scattering calculations are able of reproducing the experimental spectra. Moreover, an extensive discussion is presented concerning the role of the final state potential needed to reproduce the experimental data of these half-metallic alloys. In particular, the effects of the cluster-size and of the exchange and correlation potential needed in reproducing all the experimental XANES features are discussed.Comment: 15 pages, 5 figure

    Discrimination and visualization of ELM types based on a probabilistic description of inter-ELM waiting times

    Get PDF
    Discrimination and visualization of different observed classes of edge-localized plasma instabilities (ELMs), using advanced data analysis techniques has been considered. An automated ELM type classifier which effectively incorporates measurement uncertainties is developed herein and applied to the discrimination of type I and type III ELMs in a set of carbon-wall JET plasmas. The approach involves constructing probability density functions (PDFs) for inter-ELM waiting times and global plasma parameters and then utilizing an effective similarity measure for comparing distributions: the Rao geodesic distance (GD). It is demonstrated that complete probability distributions of plasma parameters contain significantly more information than the measurement values alone, enabling effective discrimination of ELM type

    Micropile Foundations in Karst: Static and Dynamic Testing Variability

    Get PDF
    Development of a major industrial facility required support of large loads from machine foundations. The site was underlain by highly variable karstic limestone conditions, which resulted in irregular depths to rock, very soft residual soil layers, and potential for voids in the rock and soil matrix. Foundation mats on micropiles were selected for support of the machines. The benefits associated with the micropiles were the speed of installation, and relative cost and schedule savings. Two load tests were performed before the start of micropile installation. One of these tests failed prematurely. A third test, performed during the initial stages of construction, also failed prematurely. Pile Driving Analyzer (PDA) testing of micropiles was used to investigate the capacity and variability of production piles that were already installed. The authors believe this may be the first application of the PDA technology to estimate the carrying capacity of micropiles bonded into rock. Because of the lack of previous experience in this application of PDA testing, suitable testing procedures needed to be developed in the field to reduce the potential for damage of the production micropiles, and to assess the accuracy of the tests. The results of the testing program showed that PDA testing may provide very accurate estimates of the capacity of micropiles bonded into rock. This paper discusses the techniques used for PDA testing of the micropiles, and compares the results of the PDA tests to the data from static load tests. The paper also contains a brief discussion on the site conditions, and the effect of the construction methods on the measured capacity of the micropiles and their variability

    Partitioning qubits in hypergraph product codes to implement logical gates

    Get PDF
    The promise of high-rate low-density parity check (LDPC) codes to substantially reduce the overhead of fault-tolerant quantum computation depends on constructing efficient, fault-tolerant implementations of logical gates on such codes. Transversal gates are the simplest type of fault-tolerant gate, but the potential of transversal gates on LDPC codes has hitherto been largely neglected. We investigate the transversal gates that can be implemented in hypergraph product codes, a class of LDPC codes. Our analysis is aided by the construction of a symplectic canonical basis for the logical operators of hypergraph product codes, a result that may be of independent interest. We show that in these codes transversal gates can implement Hadamard (up to logical SWAP gates) and control-Z on all logical qubits. Moreover, we show that sequences of transversal operations, interleaved with error correction, allow implementation of entangling gates between arbitrary pairs of logical qubits in the same code block. We thereby demonstrate that transversal gates can be used as the basis for universal quantum computing on LDPC codes, when supplemented with state injection
    • …
    corecore