3,102 research outputs found
Human respiratory syncytial virus in children hospitalized for acute lower respiratory infection
OBJETIVO: Avaliar a prevalência e a sazonalidade do vírus respiratório sincicial humano (VRSH) em crianças de 0 a 6 anos hospitalizadas por infecção aguda das vias aéreas inferiores (IVAI) em São José do Rio Preto (SP) e a associação entre faixa etária, diagnóstico e VRSH. MÉTODOS: Entre maio de 2004 e setembro de 2005, foram estudados 290 episódios consecutivos de IVAI adquiridos na comunidade em crianças de 0 a 6 anos internadas no Hospital de Base de São José do Rio Preto. Para identificação do VRSH, foram coletadas amostras de secreção de nasofaringe e realizou-se análise molecular por meio da técnica de RT-PCR. RESULTADOS: A prevalência de VRSH foi de 29,3% nos episódios de IVAI hospitalizados. A IVAI foi frequente em lactentes (mediana de idade = 13,5 meses). O VRSH foi mais frequente nos casos de bronquiolite (64%) e no primeiro ano de vida (35%). Os episódios de infecção por VRSH ocorreram entre o outono e a primavera, com frequência maior em 2004 do que em 2005. Os critérios clínicos e radiológicos não foram suficientes para o diagnóstico de infecção pelo VRSH. Em 78,8% dos episódios de VRSH, houve tratamento com antibiótico. CONCLUSÕES: A prevalência do VRSH em crianças de 0 a 6 anos hospitalizadas por IVAI foi elevada, com predomínio nas mais jovens ou com bronquiolite. A circulação do vírus variou nos dois anos estudados. Os resultados sugerem necessidade de diagnóstico laboratorial do VRSR na prática clínica.OBJECTIVE: To evaluate the prevalence and seasonality of human respiratory syncytial virus (HRSV) in children aged 0 to 6 years, hospitalized with acute lower respiratory infection (ALRI) in São José do Rio Preto, SP, Brazil, and the association between age, diagnosis, and HRSV. METHODS: Between May 2004 and September 2005, we studied 290 consecutive episodes of community-acquired ALRI in children aged 0 to 6 years admitted to the Hospital de Base of São José do Rio Preto. In order to detect HRSV, nasopharyngeal secretion samples were collected and RT-PCR molecular analysis was performed. RESULTS: The HRSV prevalence was 29.3% for the cases of hospitalized patients with ALRI. ALRI was common in infants (median age = 13.5 months). HRSV was more frequent in cases of bronchiolitis (64%) and during the first year of life (35%). Episodes of HRSV infection occurred between fall and spring, showing higher frequency in 2004 than in 2005. Clinical and radiological criteria were not sufficient to establish the diagnosis of infection with HRSV. Antibiotic therapy was used in 78.8% of episodes of HRSV. CONCLUSIONS: There was a high prevalence of HRSV in children aged 0 to 6 years who were hospitalized for ALRI, predominantly in younger patients or those with bronchiolitis. The circulation of the virus varied in the two years studied. Our results suggest the need for laboratory diagnosis of HRSV in the clinical practice
Cyclotron effective masses in layered metals
Many layered metals such as quasi-two-dimensional organic molecular crystals
show properties consistent with a Fermi liquid description at low temperatures.
The effective masses extracted from the temperature dependence of the magnetic
oscillations observed in these materials are in the range, m^*_c/m_e \sim 1-7,
suggesting that these systems are strongly correlated. However, the ratio
m^*_c/m_e contains both the renormalization due to the electron-electron
interaction and the periodic potential of the lattice. We show that for any
quasi-two-dimensional band structure, the cyclotron mass is proportional to the
density of states at the Fermi energy. Due to Luttinger's theorem, this result
is also valid in the presence of interactions. We then evaluate m_c for several
model band structures for the \beta, \kappa, and \theta families of
(BEDT-TTF)_2X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X
is an anion. We find that for \kappa-(BEDT-TTF)_2X, the cyclotron mass of the
\beta-orbit, m^{*\beta}_c, is close to 2 m^{*\alpha}_c, where m^{*\alpha}_c is
the effective mass of the \alpha- orbit. This result is fairly insensitive to
the band structure details. For a wide range of materials we compare values of
the cyclotron mass deduced from band structure calculations to values deduced
from measurements of magnetic oscillations and the specific heat coefficient.Comment: 12 pages, 3 eps figure
Galactic Bulge Microlensing Optical Depth from EROS-2
We present a new EROS-2 measurement of the microlensing optical depth toward
the Galactic Bulge. Light curves of clump-giant stars
distributed over of the Bulge were monitored during seven Bulge
seasons. 120 events were found with apparent amplifications greater than 1.6
and Einstein radius crossing times in the range 5 {\rm d}.
This is the largest existing sample of clump-giant events and the first to
include northern Galactic fields. In the Galactic latitude range
1.4\degr<|b|<7.0\degr, we find with . These results are in good
agreement with our previous measurement, with recent measurements of the MACHO
and OGLE-II groups, and with predictions of Bulge models.Comment: accepted A&A, minor revision
Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability
Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for
which the source is a variable star, simply because most variable stars are
systematically eliminated from microlensing studies. Using observational data
for this event, we show that the intrinsic variability of a microlensed star is
a powerful tool to constrain the nature of the lens by breaking the degeneracy
between the microlens parallax and the blended light. We also present a
statistical test for discriminating the location of the lens based on the
\chi^2 contours of the vector \Lambda, the inverse of the projected velocity.
We find that while SMC self lensing is somewhat favored over halo lensing,
neither location can be ruled out with good confidence.Comment: 15 text pages + 2 tables + 7 figures. Published in the Astrophysical
Journa
The EROS2 search for microlensing events towards the spiral arms: the complete seven season results
The EROS-2 project has been designed to search for microlensing events
towards any dense stellar field. The densest parts of the Galactic spiral arms
have been monitored to maximize the microlensing signal expected from the stars
of the Galactic disk and bulge. 12.9 million stars have been monitored during 7
seasons towards 4 directions in the Galactic plane, away from the Galactic
center. A total of 27 microlensing event candidates have been found. Estimates
of the optical depths from the 22 best events are provided. A first order
interpretation shows that simple Galactic models with a standard disk and an
elongated bulge are in agreement with our observations. We find that the
average microlensing optical depth towards the complete EROS-cataloged stars of
the spiral arms is , a number that is
stable when the selection criteria are moderately varied. As the EROS catalog
is almost complete up to , the optical depth estimated for the
sub-sample of bright target stars with () is easier to interpret. The set of microlensing events
that we have observed is consistent with a simple Galactic model. A more
precise interpretation would require either a better knowledge of the distance
distribution of the target stars, or a simulation based on a Galactic model.
For this purpose, we define and discuss the concept of optical depth for a
given catalog or for a limiting magnitude.Comment: 22 pages submitted to Astronomy & Astrophysic
Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud
For seven years, the EROS-2 project obtained a mass of photometric data on
variable stars. We present a peculiar Cepheid-like star, in the direction of
the Small Magellanic Cloud, which demonstrates unusual photometric behaviour
over a short time interval. We report on data of the photometry acquired by the
MARLY telescope and spectroscopy from the EFOSC instrument for this star,
called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid
HR 7308. The light curve of our target is analysed using the Analysis of
Variance method to determine a pulsational period of 5.5675 days. A fit of
time-dependent Fourier coefficients is performed and a search for proper motion
is conducted. The light curve exhibits a previously unobserved and spectacular
change in both mean magnitude and amplitude, which has no clear theoretical
explanation. Our analysis of the spectrum implies a radial velocity of 104 km
s and a metallicity of -0.40.2 dex. In the direction of right
ascension, we measure a proper motion of 17.46.0 mas yr using EROS
astrometry, which is compatible with data from the NOMAD catalogue. The nature
of EROS2 J005135-714459(sm0060n13842) remains unclear. For this star, we may
have detected a non-zero proper motion for this star, which would imply that it
is a foreground object. Its radial velocity, pulsational characteristics, and
photometric data, however, suggest that it is instead a Cepheid-like object
located in the SMC. In such a case, it would present a challenge to
conventional Cepheid models.Comment: Correction of typos in the abstrac
Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species
Background: Metals including iron, copper and zinc are essential for physiological processes yet can be toxic at high concentrations. However the role of these metals in the progression of cancer is not well defined. Here we study the anti-tumor activity of the metal chelator, TPEN, and define its mechanism of action.Methods: Multiple approaches were employed, including cell viability, cell cycle analysis, multiple measurements of apoptosis, and mitochondrial function. In addition we measured cellular metal contents and employed EPR to record redox cycling of TPEN-metal complexes. Mouse xenografts were also performed to test the efficacy of TPEN in vivo.Results: We show that metal chelation using TPEN (5μM) selectively induces cell death in HCT116 colon cancer cells without affecting the viability of non-cancerous colon or intestinal cells. Cell death was associated with increased levels of reactive oxygen species (ROS) and was inhibited by antioxidants and by prior chelation of copper. Interestingly, HCT116 cells accumulate copper to 7-folds higher levels than normal colon cells, and the TPEN-copper complex engages in redox cycling to generate hydroxyl radicals. Consistently, TPEN exhibits robust anti-tumor activity in vivo in colon cancer mouse xenografts.Conclusion: Our data show that TPEN induces cell death by chelating copper to produce TPEN-copper complexes that engage in redox cycling to selectively eliminate colon cancer cells. © 2014 Fatfat et al.; licensee BioMed Central Ltd
The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
Superconductivity and a Mott Transition in a Hubbard Model on an Anisotropic Triangular Lattice
A half-filled-band Hubbard model on an anisotropic triangular lattice (t in
two bond directions and t' in the other) is studied using an optimization
variational Monte Carlo method, to consider the Mott transition and
superconductivity arising in \kappa-BEDT-TTF_2X. Adopting wave functions with
doublon-holon binding factors, we reveal that a first-order Mott
(conductor-to-nonmagnetic insulator) transition takes place at U=U_c
approximately of the band width, for a wide range of t'/t. This transition is
not directly connected to magnetism. Robust d-wave superconductivity appears in
a restricted parameter range: immediately below U_c and moderate strength of
frustration (0.4\lsim t'/t\lsim 0.7), where short-range antiferromagnetic
correlation sufficiently develops but does not come to a long-range order. The
relevance to experiments is also discussed.Comment: 15 pages, 17 figures, submitted to J. Phys. Soc. Jp
- …