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Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent
with a Fermi-liquid description at low temperatures. The effective masses extracted from the temperature
dependence of the magnetic oscillations observed in these materials are in thenahgg;- 1—7, suggest-
ing that these systems are strongly correlated. However, theméfim, contains both the renormalization due
to the electron-electron interaction and the periodic potential of the lattice. We show tlaatyfquasi-two-
dimensional band structure, the cyclotron mass is proportional to the density-of-states at the Fermi energy. Due
to Luttinger’s theorem, this result is also valid in the presence of interactions. We then evalUdateseveral
model band structures for th@, «, and 6 families of (BEDT-TTF)X, where BEDT-TTF is bis-
(ethylenedithia-tetrathiafulvalepend X is an anion. We find that fot-(BEDT-TTF),X, the cyclotron mass
of the 8 orbit, m¥#, is close to 2m}*, wherem? “ is the effective mass of the orbit. This result is fairly
insensitive to the band-structure details. For a wide range of materials we compare values of the cyclotron mass
deduced from band-structure calculations to values deduced from measurements of magnetic oscillations and
the specific-heat coefficient.

I. INTRODUCTION electron-electron and electron-phonon interactions. First, it is
necessary to compute the cyclotron band nrags which

Quasi-two-dimesional metals such as the organic molecutakes into account the fact that electrons are not free but are
lar crystals based on the BEDT-TTF moleculehere  moving in the presence of the periodic potential associated
BEDT-TTF is bistethylenedithia-tetrathiafulvaleneand the it the crystal lattice. Then, the ratin¥ /m, can be used to
layered perovskites §RuQ,, show properties that are con- estimate the importance of many-body effects. As we will
sistent with a Fermi-liquid description at low temperatufres. see, estimates af, deduced from band-structure calcula-
Although transport properties of these materials show UNCOMyons, can vary by as much as a factor of 3.

ventional behavior with temperature at high temperatures, at On the other hand, recent calculations of the transport

lr(()avsvisi?\mp?;atti:(frzzfvv\(lit?}bt(;% zec:atKurlg :Eg tﬂgﬂgﬁ:ﬁﬂ i 5'properties of strongly correlated systems using dynamical
yisd P ' P mean-field theory to solve the Hubbard model on a frus-

linear in temperature, and a Drude peak is present in th : ST .
optical conductivity> Furthermore, magnetic oscillations ?rateq hypercubic lattice, |nd|cate'that as the electronic cor-
relations become stronger there is a clear crossover from a

such as the de Haas-van Alphen effect is obser{/sdggest- S o o
ing the presence of a well-defined Fermi surface and quasf-6™™Mi liquid at low temperatures to a “bad metal” with no
particle excitations described by Fermi-liquid theory. In or-duasiparticles at high temperatures. However, such a cross-
der to understand the role of electron-electron interactions iQVer and the associated signatures in transport properties
these materials it is then necessary to quantify the strength 4€-9-» @ peak in the temperature dependence of the ther-
electron correlations and test how robust the Fermi liquidnopower and resistivity, and disappearance of the Drude
description is. peak in the optical conductivityare only observed for suffi-
Cyclotron effective masses for the quasiparticles can beiently large values of the rationy /m.~3—4. For smaller
obtained from fitting the observed temperature dependencélues, transport properties resemble the ones found in a
of the amplitude of magnetic oscillations to the Lifshitz- nearly free-electron metal. Since the transport properties of
Kosevich form. The amplitude at a temperatilires propor-  the organic metals do show the signatures discussed above, it
tional to is important to have accurate estimatesngf/m. in order to
check the consistency of describing them as strongly corre-
X  27%kgT lated systems.
" sinhX’ a hot (1) In this paper, we show that in a quasi-two-dimensional
Fermi liquid there is a simple relation between the cyclotron
wherew? =eB/m is the cyclotron frequency amdd} isthe  mass and the density-of-states at the Fermi surface. This re-
cyclotron effective mass, including many-body effects. sult, Eq.(7), holds forany dispersion relation for the quasi-
Typical values obtained for the cyclotron mass in theseparticles. Using this relation, we compute the ratio of the
materials are in the rangeys/mg~1—7 (wherem, is the  cyclotron band masses associated with ¢hand 8 orbits,
free-electron magssuggesting the possibility that many- mf/mg, for a model band structure for-(BEDT-TTF),X.
body effects may cause a significant enhancement of the efhe ratio is approximately 2, and varies by only about 10%
fective mass. However, knowingg /m, by itself is not suf-  even when the band-structure parameters are varied signifi-
ficient to determine the size of many-body effects due tocantly. This is in good agreement with valuesnof#/m* ¢,
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deduced from magnetic oscillation experiments, suggestingot be equal and so caution is in order when trying to com-
that the quasiparticle renormalization factor does not varnpare effective masses extracted from different measurements.
significantly between different parts of the Fermi surface.

IIl. THE CYCLOTRON MASS AND THE DENSITY-
Il. DIFFERENT EFFECTIVE MASSES OF-STATES

We now briefly review several of the effective masses \ye now show how for a quasi-two-dimensional metal

that can be defined for electrons or quasiparticles with a geny,q cyclotron mass defined by E@) is simply related to the

eral dispersion relatiom(k). S density-of-states at the Fermi energy. First, following Ash-
Band mass tensofThis is defined croft and Mermirf Eq. (3) can be rearranged to give

Pe(k)\ 7t
ak,ok,|

b _32
m,, =

@ 2 0A(er)

me= ,
¢ 21 (96;:

5
wherev and u are Cartesian coordinates and give informa-

tion of the band dispersion for any value of the electronicyhere A(ep) is the area of the cross section of the Fermi
momentum. In particular, from the band mass tensor, thgyrface defined by the orbit described by an electron or hole,
band dispersion of the electrons il directions near the jn the presence of a magnetic fiedd
Fermi surface can be reconstructed. For a quasi-two-dimensional system with only one band

Cyclotron massWhen a metal is in the presence of anhat crosses the Fermi energy, and a magnetic field perpen-
external magnetic field the electrons undergo periodic orbitgjicylar to the layers, the area of the orbit is just the cross-
in both position and momentum space. The cyclotron frexgctional area of the Fermi surface within a layer
guencyw., associated with the periodic motion along these
orbits on the Fermi surface, is given‘y

L s ok m Aler) =472 Ol e(k)], ®)

w. 2meB [ [Ve(k)], eB’ ©

wherek is the two-dimensional wave vector within a layer.
whereB is the strength of the magnetic field ah¥e(k)],  Equation(6) is just based on state counting and assumes that
is the gradient of the dispersion relation in the plane perpenthe interlayer dispersion can be neglected. Corrections due to
dicular to the field and the line integral is around the periodica finite interlayer bandwidth will be of ordeg/er wheret,
orbit on the Fermi surface. The last relation has been used {8 the inter layer hopping integral. For typical organic metals
define a cyclotron effective mass, . Note that this effective  this ratio is less than 0.0%2 Taking the derivative of E¢(6)

mass involves an average of the dispersion relation along thgith respect toer gives, for the cyclotron mass,
periodic orbit. It determines the energy spacing of the Lan-

dau levels and can be extracted from the temperature depen-
dence of the amplitude of magnetic oscillations, as discussed
above.

Plasma frequenciesReflectivity measurements can be
used to determine the plasma frequency associated with cor ey
lective oscillations of a charged Fermi liquid. Polarized light
can be used to determine the anisotropy of these frequencies. _ .
For light polarized with the electric field in the direction in Poler)= zk: Oler—e(k)].
a metal with Fermi energye , the plasma frequenay,,, , is

me=2mh%p,(€r), )

wherep,(eg) is the density-of-states per spin at the Fermi

given by We stress that this simple expression for the cyclotron band
mass is only true for quasi-two-dimensional metals. In other
> | € 2 3 9*e(k) _ ne? cases, the reduction of the general expreséio (7) can-
CouT\ h f d°k k2 Q(EF_ek)zm_pM' (4) not be done. For example, for a three-dimensional system the
o

area associated to an electron or hole orbit is not defined by
where the integral runs over the first Brillouin zone and theEg. (6), and, therefore, it is not possible to relate the cyclo-
last identity has been used to define an effective masgs, tron mass to the density-of-states at the Fermi energy. The
when n is the total number of charge carriers. The aboveresult(7) was previously pointed out by Tamuea al® but
expression is derived from Lindhard’s dielectric function. its significance appears to have been completely overlooked.
Note that in contrast with the cyclotron mass in E8), We will show below that as a consequence of Luttinger's
which depends on electron states at the Fermi surface, thibeorem it is also true in the presence of interactions.
plasma mass includes all the occupied states, and not only For more general situations where the Fermi surface of
those that are close to the Fermi energy. This is because tltke metal crosses several bands, the different cyclotron
plasma oscillation is a collective process in which all themasses can be expressed in terms of the partial density-of-
electrons participate. states associated with each of the bands. As an example, we
For a parabolic dispersion relatietk) =7%2k?/(2mg), all ~ will compute the band cyclotron masses for theand 3
of the effective masses defined above will equgl How-  orbits in the x-(BEDT-TTF),X family, for which several
ever, we stress that for a general dispersion relation they wilbands are present.
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. . k-(BEDT-TTF),X material. The arrows indicate the motion of
FIG. 1. Stacking pattern of the BEDT-TTF molecules within a holes on each orbit in the presence of a magnetic field perpendicular
layer of thex-(BEDT-TTF),X family of organic metalst,, t;, and  to the layers. The box determines the Brillouin-zone boundary.

t; denote hopping amplitudes betwegimersof molecules. There is a small energy gap at the boundary and3tiuebit is only
observed in magnetic oscillations due to magnetic breakdown. In
IV. MODEL BAND STRUCTURES the B-(BEDT-TTF),X family the Brillouin zone is twice as large

) and there is nax orbit.
There are several approaches used for calculating the

band structure of layered materials. Semi-empirical ap. (BEDT.TTF),X family. In this case all the sites in the
p_roaches.such as_the ,EkEI apprommaﬂon use parametnzgd lattice are equivalent and there is only one dimer per unit
tight-binding Hamiltonians with parameters that are partially .||

determined from  experiment. In the case of it\e diagonalize the Hamiltonia(8), we obtain the two
k-(BEDT-TTF),X crystals, the effective tight-binding dispersion relations

Hamiltonian that is used to model the interaction of the high-

est occupied molecular orbittHOMO-HOMO) antibonding €% (K) =t,c09 k) = [t2+t2+ 2t tscog k) ]Y2cog k,/2).
combination of the BEDT-TTF dimers at different lattice e Y )
sites, i§9-122

The Fermi surface is shown in Fig. 3, foy—t3=0.05 and
t,=t,. The «a orbit is associated with the hole pocket in the
Fermi surface and the unoccupied part of the lower band
e(k), while the B orbit (which occurs in large magnetic
fields due to magnetic breakdoyeontains parts from both
the upper and lower band dispersions and corresponds to the
outer orbit described with arrows in Fig. 3.

For theB-(BEDT-TTF),X materials, due to the columnar
stacking of the BEDT-TTF molecules and being-t,~ts,
where ciT, creates an electron in the antibonding orbital atihere is only one dimer of BEDT-TTF molecules per site,
sitei on a square latticét; andt; are nearest-neighbor hop- and there is only one half-filled band that cuts the Fermi
pings, and is the next-nearest-neighbor hopping amplitudeenergy and is described by
along only one diagonal. Thex-(BEDT-TTF),X materials
have two dimers per unit cell and, becawgeandt; can be e(k) =t,cogky) + 2t cog k,/2)cog k,/2). (10
slightly different, the two dimers in each cell of the
x-(BEDT-TTF),X materials are inequivalent. The relation-  For the §-(BEDT-TTF),X materials, the geometrical ar-
ship between the different hopping integrals and the georangement is similar to that for-(BEDT-TTF),X with each
metrical arrangement of the BEDT-TTF molecules is showndimer replaced by a single BEDT-TTF molecdfdt is then
in Fig. 1. described by the dispersion relati@® but the band is 3/4-

In Fig. 2 we show the stacking pattern for the filled.

We have evaluated the cyclotron band masses associated
— with the different orbits described along the Fermi surface
—— for k-(BEDT-TTF),X. The area associated with tleorbit
— (see Fig. 3is given by

>::\/t1 A“(EF)=4772§k: {1-bler—e (K]} (11)

2 and the cyclotron effective mass is, from E@),

H=t12 (ciTcJ-+H. c.)+t32 (ciTck+ H.c)
] 13

+t22I (cle,+H.c), (8)

mg=2mh’p, (er), (12

FIG. 2. Stacking pattern of the BEDT-TTF molecules within a Wherep,, (€g), is the density-of-states per unit cell and spin
layer of theB-(BEDT-TTF),X family of organic superconductors. associated with the™ (k) band. Similarly, the area enclosed
t; andt, denote hopping amplitudes betwedimersof molecules. by the 8 orbit is
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TABLE I. Cyclotron effective masses predicted by tight-binding band structures with values of the hopping integrals given by different
Huckel calculations. EHA denotes the extendedckil approximation. These masses are compared to values deduced from magnetic
oscillation experiments. The cyclotron masses are obtained froni7Ewith the density-of-states computed from the tight-binding Hamil-
tonian(8) for the given values of the hopping integréjsandt, and witht; =t5. Note that the ratio of the masses for {i@nd « orbits in
Fig. 3 depends weakly on the band-structure parameters. Except for the second line, all the results are for ambient pressure.

t; (meV)  t,(meV) Ref. mfim,  mffimg (expd  mf/imE  mEPImE*(expd

k-(BEDT-TTF),Cu(SCN), 31.3 23.0 26 8.5 65 2.2 1.8
7.4 kbar 40.5 24.8 26 7.4 ~3.8 2.3 ~2.0
k-(BEDT-TTF),CU N(CN),]Br 61.7 32.7 18 4.6 6% 2.35 ?

62.1 42.3 29 4.4 6% 2.2 ?
ab initio 78.2 39.0 18 3.8 6% 2.35 ?
k-(BEDT-TTF),Cuy(CN)3 50.1 53.0 29 4.6 49 2.0 ?
k-(BEDT-TTF),l5 70.0 40.5 29 4.1 3% 2.3 2.0

54.0 34.0 31 5.3 3% 2.3 2.0
k-(BETS),GaCl, ? ? ? 5.8 ? 1.6
k-(BETS),C(CN)3 EHA ? 33 1.2 3.8 ? 1.9
6-(BEDT-TTF), |5 42.0 64.0 34 2.2 3% 2.6 1.8
B-(BEDT-TTF),l; 60.0 42.0 35 4.3 42

8Reference 10.
bReference 27.
‘Reference 28.
dReference 30.
®Reference 3.

fReference 32.
9Reference 33.
PReference 9.

iReference 36.

-3 2 1
Af(ep) =472, {1~ blec—e" (K)]) p| =1 ] =2k,
X 2 m’qyr \d
+4m 3 {1-0le—e (O]} (13 p(-1=e=1)
and the cyclotron mass is proportional to the total density- = 2 F arcsi,.(i\/[(5_72)(7+ 1)]/2) ;q},
of-states: w27 2q

(16)

. . _ where g=1—(7—1)3(7+3)/(167) with 7=2e+3. K
wherep,(eg) is the total density-of-states per unit cell and gndF are the complete elliptic integral and the elliptic inte-
spin. Note that a minus sign comes in the above expressionga| of the first kind, respectively.
when we are considering the electron mass instead of thé From the above expressions and K@) we obtain the
hole mass asne=—mj,, wherem, is the hole mass. following cyclotron massesm?/m,=0.23t and mZ/m,

For the dispersion(9) with t,=t;=tz=t, Ivanov,  _g 11¢ with t given in eV and we have used the intralayer
Yakushi, and Ugolkov4 have obtained analytical expres- Hjnit cell area ofA=104 A2. This givesm#/m&=2 and it
" C C

sions for the density-of-states projected onto the upper an rns out that this ratio is relatively insensitive to variations

lower bands. If 6}” energies are [n unitstpthe total density- in the band-structure parameters. We have relaxed the con-
of-states per unit cell and spin is dition on the hopping integrals =t,=t5, and, we have nu-
merically evaluated the partial density-of-states instead of
K(E) using Eqgs.(15) and (16). The ratio of the cyclotron masses
qu\/,—r q)’ obtained from the effective dimer model for fixeg=t; but
different values oft,/t, is, m#/m&=2.4, 2.2, and 2.0, for
t,/t,=0.5,0.7,1.0, respectively.
2 K(q) (15) _In order to have a reqlistic des_cription of 'ghe layered ma-
w27 terials we use the hopping amplitudes obtained from quan-
tum chemistry calculations using the &kel approximation
and, for the partial density-of-states associated with thend, in some cases, results obtained from first-principle cal-
lower band culations. The hoppings of the effective dimer model, for

m’gZZTTﬁzpa( EF), (14)

p(—32<e<—-1)=

p(—1<e<3)=
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TABLE II. Comparison of the density-of-states at the Fermi endegyl the associated effective magses
which is obtained from different methods of calculating band structure. LDA deiabtésitio calculations
using the local-density approximation. EHA denotes the extendexkéfiapproximation and HA denotes
values from Table I, based on the tkel approximation. The cyclotron masses are calculated from the
density-of-states using E@7). The density-of-states(eg) is given in units of states per unit cell per spin per
eV. Note that the Hekel method gives effective masses that are two to five times larger than the other more
sophisticated methods.

LDA EHA HA Expt.

p(€r) mglme p(€r) mglme p(€r) mglme mg B/me
x-(BEDT-TTF),Cu(SCN), 6.4 2.6 4.2 1.7 21.2 8.5 6.5
x-(BEDT-TTF),CU N(CN),|Br 6.9 2.7 4.4 1.7 11.7 4.6 6.4
B-(BEDT-TTF),l5 ? 2.P 1.6 5.6 4.3 4.2

%Reference 37.
bReference 38.
‘Reference 39.

which t;=t; andt, #t,, are given in Table I. A more de- «-(BEDT-TTF),CU N(CN),]Br have been calculated by an
tailed discussion of this model and the relationship betweeap initio method. The tight-binding parameters for a Hub-
t; andt, and the intermolecular hoppings calculated in thebard model for the dimers is then evaluated by fitting the
Huckel approximation can be found in Ref. 2. A minor point energy levels to theb initio values. The resulting param-
is that if we denote the Coulomb repulsion in each moleculesters are similar to those obtained by an extendeédkelu

by Uo, and the hopping amplitude between the moleculegalculation for the dimer pai® But the resulting density-of-
within one dimer byt,, for Uy>4t, (strongly correlated states is more than twice the results of extendédkelfor
case, the hopping amplitudes should be corrected by a factothe solid.

of 1//2 with respect to the ones obtained from theckie The most reliable method of calculating band structures is
calculation. However, in the cadd,~4t,, this factor is generally considered to b&b initio methods based on the
0.92 and the effect of correlations to the matrix elements idocal-density approximatioiiLDA). Nevertheless, different
small. Different calculations suggest that the ratlg/4t,  groups still often obtain quite different results. For example,
~1, so that in Table | we multiply all the bare hoppings by values obtained for the density-of-states at the Fermi energy
0.92. in the fullerene metal KCq, differ by as much as 509%.

In Table I, we also give the cyclotron masses obtainedExtended Huakel calculations do fall into this rangeDue
from Eq. (7), where the density-of-states has been computetb the large number of atoms in a unit cell only a fel
numerically for the different hoppings. It can be seen that thenitio  calculations have been attempted for the
calculated cyclotron band masses are sensitive to the paraBEDT-TTF),X materials.
eters and the values deduced from the parameters calculatedResults for the density-of-statéand the corresponding
by different groups for the same material can vary signifi-cyclotron massgsobtained using the three methods are
cantly. However, the calculated ratiof/m¢ is relatively in-  shown in Table II. Note the large variation in results for each
sensitive to the parameters. of the materials. In particular, the ‘ldkel method gives

The band structures of the (BEDT-TTH family have = masses that are two to five times larger than those obtained
been calculated by several different techniques and some &Y the other more sophisticated methods.
the results for the density-of-states at the Fermi energy are
compared in Table Il. The Hikel method is the simplest and V. THE CYCLOTRON MASS IN THE PRESENCE OF
only considers ther orbitals and neglects a#t orbitals. The INTERACTIONS
overlap integrals that are calculated are all scaled by some _ )
empirical parameter and then used as hopping integrals in a The above treatment neglected the effect of interactions
tight-binding band structure. It is generally acknowledgedP€tween the electrons. We now show that & has a natu-
that this method gives a good qualitative description of elecf@l generalization in the case of a Fermi liquid. The one-
tronic properties(such as the symmetry and ordering of electron. Green’s function in a general interacting electron
state$ but cannot give a quantitative description of elec-SYyStem Is
tronic properties?

The extended Fekel method® treats bothr ando orbit- G(k,w+in)= 1
als. Although it is more quantitatively reliable than the ’ w+in—ek)—%(k )

Huckel approximation it still does not give a completely in momentum space, wherE(k, o) is the electron self-

guantitative description of organic molecules. It has bee e S
used to calculate the band structure of a wide range of O?_anergy. In a Fermi liquid, near the quasiparticle poles, the

ganic metals by Whangbo and Hoffman and co-workees Green’s function can be rewritten as
Ref. 17. 7

The energy levels for a pair of BEDT-TTF dimers G(k,w)= + (18)
with  the same geometrical arrangement as in w—€(k)

17
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where'e(k) is the quasiparticle energy and of a momentum independent self-energy, as then the cyclo-
tron effective masses reduce to
1
7= ms =27%h%p(ep)/Z=m./Z, (23

1-[02(k,0) dw]] ,=2q)

is the residue at the quasiparticle pole. Note that the abov
expression is true for a Fermi liquid, and for electrons with

whereZ is the quasiparticle weight, which, in terms of the
VEelf- -energy, is

momentum close to the Fermi surface for which ifk 33 (o) -1
—kg,w— €g)—0. The spectral density is then given by Z=( P ~ ) .
(A)=€F
Ak, w)=— llm Glw+in)= Lo elk] . In this case, the ratios of the cyclotron effective masses as-
™ 1-[d2(k,w) dw]] =% sociated with the quasiparticles moving along different orbits
(19  m*P/m*“, should be the same as the ratios associated with
Thus, the quasiparticle density-of-states at the Fermi energifieé noninteracting systemg/m¢ .

is A partial test of the momentum independent self-energy is

provided by comparing the measured ratios of the renormal-
~ ~ ~ ized cyclotron masses in different orbits with the cyclotron
p(ep)—Ek: A er—e(k)] band mass ratios. This is done in Table I. The relative con-
sistency between the observed values of this ratio and the
E ( ﬁz(k ) band-structure values suggests that if there are sizeable
T4 Jw renormalizations due to many-body effects, then these renor-
malizations are not significantly different on the different
Miiller-HartmanR® showed that, if the self-energy is inde- parts of the Fermi surface. However, this consistency is only
pendent of momentum, then at zero temperature, a necessary condition but not sufficient for having a momen-
tum independent self-energy, as cyclotron masses include
averages over the Fermi surface and, therefore, cancellations
of contributions from different parts of the Fermi surface
may occur.
the noninteracting density-of-states at the Fermi energy. So Furthermore, in Ref. 10, the effective masses for
in this casep(er)=p(ee)/Z. Note that the quasiparticle ,-(BEDT-TTF),Cu(SCN), were measured as the pressure
density-of-states is always enhanced because for a Fermi ligyas increased from 1 bar to 20 kban* #/m, decreased

Ak'er). (20

w=eF

; Ak, er)=p(ep),

uid from 6.5-0.1 at 1 bar to 2.70.1 at 16.3 kbarm} “/m,
73 (K, o) decreased from 3:50.1 at 1 bar to 1.40.1 at 16.3 kbar.
: <0. However, the ratiom?#/m*“ has a constant value of 1.9
do |, 7 within error.

Some time ago, Luttingét showed that in an interacting
system with Fermi-liquid properties, the results of Lifshitz
and Kosevich still describe the de Haas van Alphen oscilla- Measurements of the electronic specific heat in the
tions provided that the relevant quasiparticle quantities ar¢BEDT-TTF),X crystals and SRRuQ, show a linear tem-

VI. SPECIFIC HEAT

used. Thus, Eq5) is replaced by perature dependence at low temperatures, consistent with a
_ Fermi-liquid description. The corresponding specific-heat
= dA coefficienty is given in Table Ill for some of these materi-
c ==

als. This coefficient is related to the quasiparticle density-of-
states at the Fermi energy(er), [see Eq.(20)] by

aGF

where a tilde denotes renormalized quantities. In a quas

two-dimensional Fermi liquid, the area enclosed by the orblts 2 r2K2
of the quasiparticles is Y="3 o(er). (24
R(EF)=4WZE G[EF—Z(k)] (21 Since the quasiparticle density-of-states is also related to
K the cyclotron effective mass by Ed22), the measured
and so, we find that the cyclotron effective mass is specific-heat coefficient can be used to calculate a corre-

sponding cyclotron effective mass. This has been done in
Table IIl for a range of organic materials. The values ob-
tained form’gﬁlmC from specific-heat measurements agree
for x-(BEDT-TTF),l; and B-(BEDT-TTF),l; but not for
Again, Egs.(22) and (20) show the cyclotron mass en- the materials with copper in the anion. Since this comparison
hancement produced by the factor appearing in(Eg). The  does provide a quantitative test of a Fermi-liquid description,
same enhancement also appears in the specific-hehtrther careful measurements are justified, particularly on a

coefficient? A further simplification is obtained for the case wider range of materials.

m* =277h2; ee—e(k)]=2mh%p,(er). (22
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TABLE Ill. Comparison of the cyclotron effective masse® # deduced from the measurements of
magnetic oscillations associated with tjgeorbit and the masses deduced from the linear specific-heat
coefficienty and Eqgs(7) and(24). A is the area of the unit cell within a layer and, is the free-electron

mass.

A(A?) m*A/m, YImJ/ (K2 mol)] m* /me(y)
k-(BEDT-TTF),Cu(SCN), 104.0 6.5-0.11° 25:+ 340 4.4+05
k-(BEDT-TTF),CUN(CN),]Br 108.6 5.416.4°8 22+ 3% 25+ 243 4+1
k-(BEDT-TTF),l4 103.0 3.9 19+1.5% 3.4+0.3
B-(BEDT-TTF),l4 56.3 4.2:0.2%6 24+ 3% 3.9+05

Such a comparison was also done recently foR80, in  ments of the cyclotron effective mass to the linear coefficient
Ref. 4, where relatioi22) was implicitly assumed, presum- in the specific heat.
ably based on its validity for a parabolic dispersion relation. (iv) The agreement between the ratio of the different mea-
Our paper provides a rigorous justification for this compari-sured cyclotron masses and the ratio calculated from band
son. In SyRuQ, there are three distinct Fermi surfaces andstructure, suggests a momentum independent self-energy, al-
the associated cyclotron masses deduced from de Haas vaibugh other experimental probes such as polarized Raman
Alphen oscillations wereng /m.=3.4, 7.5, and 14.6 for the scattering, photoemission spectra, and angular dependent
a, B, and y orbits, respectively® From the above discus- magnetoresistance oscillations are needed before making any
sion, it follows that the specific-heat coefficient oL RUO, definitive conclusion.
is related to the effective masses by Based on comparison with a wide range of materials, we
conclude the following. First, the effective masses deduced
from magnetic oscillations and specific heat, are consistent
for Sr,RuQ, and for two out of four of the organic materials
considered. For three out of four of the organic materials for
which comes from the fact that the total density-of-states isvhich data is avalailable, the measured ratiy?/mg* is
just the sum of the density-of-states of the different Fermiconsistent with the band-structure rauinf/mg‘ . Further-
surfaces. Evaluating E@25) we obtain a specific-heat coef- more, for thex-(BEDT-TTF), Cu(NCS), this ratio does not
ficient of 36.7 mJ/(R mol), which agrees with the mea- change under pressure while the individual effective masses

Wké * * B * Y
‘}/Zw(mc +me P +mg ), (25)

sured valué&' of 37.4 mJ/(K mol). decrease by a factor of 2.5. This suggests that the self-energy
does not vary significantly over the different parts of the
VIl. CONCLUSIONS Fermi surface. We also note that the significant variation of

the effective masses with pressure cannot be explained in
We now summarize our results and their implications.terms of band structure; it predicts a small variation with
First, it was shown that in a quasi-two-dimensional metal inpressure.
which the dispersion perpendicular to the layers can be ne- A comparison of the results of band-structure calculations
glected, the cyclotron effective mass for a particular orbit inusing a range of methods, found that they produced a large
a general band structure is simply related to the density-ofrange in values for the density-of-statesd thus the effec-
states at the Fermi energy associated with the relevant bantive masses The Hickel method has often been used to
Second, it was shown that, due to Luttinger’s results for sestimate the hopping integrals in tight-binding band struc-
Fermi liquid, a similar relationship holds in the presence oftures(as in Table ). It is less sophisticated than the extended
interactions. Huckel method, which in turn is less sophisticated tladm
These results have a number of general applications timitio methods based on the local-density approximation. We
layered metals that have Fermi-liquid properties at low temsuggest that the Hikel method is producing hopping inte-
peratures. grals that are too small by a factor of 2 to 4. The best strategy
(i) In order to evaluate the effective mass from band structo evaluate these integrals would be to fit a LDA band struc-
ture it is not necessary to numerically evaluate the derivativéure to a tight-binding dispersion, such as E®). Such an
in Eqg. (5), as has been done previously by a number of auapproach was recently taken for,BuQ,.2°
thors. Instead Eq(7) can be used together with the density- We now come back to the central question of this paper:
of-states at the Fermi energy. This eliminates the need tare the layered metals we have considered strongly corre-
perform the cumbersome task of repeating the band-structutated? A definitive answer is not possible because of the
calculations for many different Fermi energies. large variation in values for the band cyclotron masses that
(i) We found that for model band structures describinghave been calculated by different band-structure methods.
the family k-(BEDT-TTF), X, the ratio of the effective mass However, we suggest that due to their greater sophistication,
for the B orbit to the mass for the orbit is fairly insensitive  the local-density approximation and extendedckel ap-
to the details of the band structure, having a value close tproximation calculations give the most reliable values. We
two. suggest that the appropriate values for the band cyclotron
(iii ) Our results imply that a quantitative test of the Fermi-masses are those calculated by the local-density approxima-
liquid description of a layered metal is to compare measuretion and extended Hikel approximation. The mass ratios
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given in Table Il then imply thatn} Blme~2.5—4, suggest-
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