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Cyclotron effective masses in layered metals
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Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent
with a Fermi-liquid description at low temperatures. The effective masses extracted from the temperature
dependence of the magnetic oscillations observed in these materials are in the range,mc* /me;127, suggest-
ing that these systems are strongly correlated. However, the ratiomc* /me contains both the renormalization due
to the electron-electron interaction and the periodic potential of the lattice. We show that forany quasi-two-
dimensional band structure, the cyclotron mass is proportional to the density-of-states at the Fermi energy. Due
to Luttinger’s theorem, this result is also valid in the presence of interactions. We then evaluatemc for several
model band structures for theb, k, and u families of (BEDT-TTF)2X, where BEDT-TTF is bis-
~ethylenedithia-tetrathiafulvalene! and X is an anion. We find that fork-(BEDT-TTF)2X, the cyclotron mass
of the b orbit, mc*

b , is close to 2mc*
a , wheremc*

a is the effective mass of thea orbit. This result is fairly
insensitive to the band-structure details. For a wide range of materials we compare values of the cyclotron mass
deduced from band-structure calculations to values deduced from measurements of magnetic oscillations and
the specific-heat coefficientg.
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I. INTRODUCTION

Quasi-two-dimesional metals such as the organic mole
lar crystals based on the BEDT-TTF molecule@where
BEDT-TTF is bis-~ethylenedithia-tetrathiafulvalene!# and the
layered perovskites Sr2RuO4, show properties that are con
sistent with a Fermi-liquid description at low temperature1

Although transport properties of these materials show unc
ventional behavior with temperature at high temperatures
low temperatures~below about 20 K in the organics! the
resistivity is quadratic with temperature, the thermopowe
linear in temperature, and a Drude peak is present in
optical conductivity.2 Furthermore, magnetic oscillation
such as the de Haas-van Alphen effect is observed3,4 suggest-
ing the presence of a well-defined Fermi surface and qu
particle excitations described by Fermi-liquid theory. In o
der to understand the role of electron-electron interaction
these materials it is then necessary to quantify the streng
electron correlations and test how robust the Fermi liq
description is.

Cyclotron effective masses for the quasiparticles can
obtained from fitting the observed temperature depende
of the amplitude of magnetic oscillations to the Lifshit
Kosevich form. The amplitude at a temperatureT is propor-
tional to

RT5
X

sinhX
, X5

2p2kBT

\vc*
, ~1!

wherevc* 5eB/mc* is the cyclotron frequency andmc* is the
cyclotron effective mass, including many-body effects.

Typical values obtained for the cyclotron mass in the
materials are in the range,mc* /me;127 ~whereme is the
free-electron mass! suggesting the possibility that many
body effects may cause a significant enhancement of the
fective mass. However, knowingmc* /me by itself is not suf-
ficient to determine the size of many-body effects due
PRB 620163-1829/2000/62~4!/2416~8!/$15.00
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electron-electron and electron-phonon interactions. First,
necessary to compute the cyclotron band massmc , which
takes into account the fact that electrons are not free but
moving in the presence of the periodic potential associa
with the crystal lattice. Then, the ratiomc* /mc can be used to
estimate the importance of many-body effects. As we w
see, estimates ofmc deduced from band-structure calcul
tions, can vary by as much as a factor of 3.

On the other hand, recent calculations of the transp
properties of strongly correlated systems using dynam
mean-field theory1 to solve the Hubbard model on a frus
trated hypercubic lattice, indicate that as the electronic c
relations become stronger there is a clear crossover fro
Fermi liquid at low temperatures to a ‘‘bad metal’’ with n
quasiparticles at high temperatures. However, such a cr
over and the associated signatures in transport prope
~e.g., a peak in the temperature dependence of the t
mopower and resistivity, and disappearance of the Dr
peak in the optical conductivity! are only observed for suffi-
ciently large values of the ratio:mc* /mc;324. For smaller
values, transport properties resemble the ones found
nearly free-electron metal. Since the transport properties
the organic metals do show the signatures discussed abo
is important to have accurate estimates ofmc* /mc in order to
check the consistency of describing them as strongly co
lated systems.

In this paper, we show that in a quasi-two-dimension
Fermi liquid there is a simple relation between the cyclotr
mass and the density-of-states at the Fermi surface. This
sult, Eq.~7!, holds forany dispersion relation for the quas
particles. Using this relation, we compute the ratio of t
cyclotron band masses associated with thea and b orbits,
mc

b/mc
a , for a model band structure fork-(BEDT-TTF)2X.

The ratio is approximately 2, and varies by only about 10
even when the band-structure parameters are varied sig
cantly. This is in good agreement with values ofm* b/m* a,
2416 ©2000 The American Physical Society
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deduced from magnetic oscillation experiments, sugges
that the quasiparticle renormalization factor does not v
significantly between different parts of the Fermi surface

II. DIFFERENT EFFECTIVE MASSES

We now briefly review several of the effective mass
that can be defined for electrons or quasiparticles with a g
eral dispersion relatione(k).

Band mass tensor. This is defined as5

mnm
b [\2S ]2e~k!

]kn]km
D 21

, ~2!

wheren andm are Cartesian coordinates and give inform
tion of the band dispersion for any value of the electro
momentum. In particular, from the band mass tensor,
band dispersion of the electrons inall directions near the
Fermi surface can be reconstructed.

Cyclotron mass. When a metal is in the presence of a
external magnetic field the electrons undergo periodic or
in both position and momentum space. The cyclotron f
quencyvc , associated with the periodic motion along the
orbits on the Fermi surface, is given by6

1

vc
5

\2

2peB R dk

@¹e~k!#'

[
mc

eB
, ~3!

whereB is the strength of the magnetic field and@“e(k)#'

is the gradient of the dispersion relation in the plane perp
dicular to the field and the line integral is around the perio
orbit on the Fermi surface. The last relation has been use
define a cyclotron effective massmc . Note that this effective
mass involves an average of the dispersion relation along
periodic orbit. It determines the energy spacing of the L
dau levels and can be extracted from the temperature de
dence of the amplitude of magnetic oscillations, as discus
above.

Plasma frequencies. Reflectivity measurements can b
used to determine the plasma frequency associated with
lective oscillations of a charged Fermi liquid. Polarized lig
can be used to determine the anisotropy of these frequen
For light polarized with the electric field in them direction in
a metal with Fermi energyeF , the plasma frequencyvpm , is
given by7

vpm
2 5S e

p\ D 2E d3k
]2e~k!

]km
2

u~eF2ek![
ne2

mpm
, ~4!

where the integral runs over the first Brillouin zone and
last identity has been used to define an effective massmpm ,
when n is the total number of charge carriers. The abo
expression is derived from Lindhard’s dielectric functio
Note that in contrast with the cyclotron mass in Eq.~3!,
which depends on electron states at the Fermi surface
plasma mass includes all the occupied states, and not
those that are close to the Fermi energy. This is because
plasma oscillation is a collective process in which all t
electrons participate.

For a parabolic dispersion relatione(k)5\2k2/(2m0), all
of the effective masses defined above will equalm0. How-
ever, we stress that for a general dispersion relation they
g
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not be equal and so caution is in order when trying to co
pare effective masses extracted from different measureme

III. THE CYCLOTRON MASS AND THE DENSITY-
OF-STATES

We now show how for a quasi-two-dimensional met
the cyclotron mass defined by Eq.~3! is simply related to the
density-of-states at the Fermi energy. First, following As
croft and Mermin,6 Eq. ~3! can be rearranged to give

mc5
\2

2p

]A~eF!

]eF
, ~5!

where A(eF) is the area of the cross section of the Fer
surface defined by the orbit described by an electron or h
in the presence of a magnetic fieldB.

For a quasi-two-dimensional system with only one ba
that crosses the Fermi energy, and a magnetic field per
dicular to the layers, the area of the orbit is just the cro
sectional area of the Fermi surface within a layer

A~eF!54p2(
k

u@eF2e~k!#, ~6!

wherek is the two-dimensional wave vector within a laye
Equation~6! is just based on state counting and assumes
the interlayer dispersion can be neglected. Corrections du
a finite interlayer bandwidth will be of ordertc /eF wheretc
is the inter layer hopping integral. For typical organic met
this ratio is less than 0.01.3,8 Taking the derivative of Eq.~6!
with respect toeF gives, for the cyclotron mass,

mc52p\2rs~eF!, ~7!

wherers(eF) is the density-of-states per spin at the Fer
energy

rs~eF!5(
k

d@eF2e~k!#.

We stress that this simple expression for the cyclotron b
mass is only true for quasi-two-dimensional metals. In ot
cases, the reduction of the general expression~5! to ~7! can-
not be done. For example, for a three-dimensional system
area associated to an electron or hole orbit is not defined
Eq. ~6!, and, therefore, it is not possible to relate the cyc
tron mass to the density-of-states at the Fermi energy.
result ~7! was previously pointed out by Tamuraet al.9 but
its significance appears to have been completely overloo
We will show below that as a consequence of Luttinge
theorem it is also true in the presence of interactions.

For more general situations where the Fermi surface
the metal crosses several bands, the different cyclo
masses can be expressed in terms of the partial densit
states associated with each of the bands. As an example
will compute the band cyclotron masses for thea and b
orbits in the k-(BEDT-TTF)2X family, for which several
bands are present.
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IV. MODEL BAND STRUCTURES

There are several approaches used for calculating
band structure of layered materials. Semi-empirical
proaches such as the Hu¨ckel approximation use parametrize
tight-binding Hamiltonians with parameters that are partia
determined from experiment. In the case
k-(BEDT-TTF)2X crystals, the effective tight-binding
Hamiltonian that is used to model the interaction of the hig
est occupied molecular orbital~HOMO-HOMO! antibonding
combination of the BEDT-TTF dimers at different lattic
sites, is10–12,2

H5t1(
i j

~ci
†cj1H. c.!1t3(

ik
~ci

†ck1H. c.!

1t2(
i l

~ci
†cl1H. c.!, ~8!

whereci
† , creates an electron in the antibonding orbital

site i on a square lattice.t1 and t3 are nearest-neighbor hop
pings, andt2 is the next-nearest-neighbor hopping amplitu
along only one diagonal. Thek-(BEDT-TTF)2X materials
have two dimers per unit cell and, becauset1 and t3 can be
slightly different, the two dimers in each cell of th
k-(BEDT-TTF)2X materials are inequivalent. The relation
ship between the different hopping integrals and the g
metrical arrangement of the BEDT-TTF molecules is sho
in Fig. 1.

In Fig. 2 we show the stacking pattern for th

FIG. 1. Stacking pattern of the BEDT-TTF molecules within
layer of thek-(BEDT-TTF)2X family of organic metals.t1 , t2, and
t3 denote hopping amplitudes betweendimersof molecules.

FIG. 2. Stacking pattern of the BEDT-TTF molecules within
layer of theb-(BEDT-TTF)2X family of organic superconductors
t1 and t2 denote hopping amplitudes betweendimersof molecules.
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b-(BEDT-TTF)2X family. In this case all the sites in the
lattice are equivalent and there is only one dimer per u
cell.

If we diagonalize the Hamiltonian~8!, we obtain the two
dispersion relations

e6~k!5t2cos~ky!6@ t1
21t3

212t1t3cos~kx!#
1/2cos~ky/2!.

~9!

The Fermi surface is shown in Fig. 3, fort12t350.05 and
t25t1. Thea orbit is associated with the hole pocket in th
Fermi surface and the unoccupied part of the lower ba
e(k), while the b orbit ~which occurs in large magneti
fields due to magnetic breakdown! contains parts from both
the upper and lower band dispersions and corresponds to
outer orbit described with arrows in Fig. 3.

For theb-(BEDT-TTF)2X materials, due to the columna
stacking of the BEDT-TTF molecules and beingt1;t2;t3,
there is only one dimer of BEDT-TTF molecules per si
and there is only one half-filled band that cuts the Fer
energy and is described by

e~k!5t2cos~ky!12t1cos~kx/2!cos~ky/2!. ~10!

For theu-(BEDT-TTF)2X materials, the geometrical ar
rangement is similar to that fork-(BEDT-TTF)2X with each
dimer replaced by a single BEDT-TTF molecule.13 It is then
described by the dispersion relation~9! but the band is 3/4-
filled.

We have evaluated the cyclotron band masses assoc
with the different orbits described along the Fermi surfa
for k-(BEDT-TTF)2X. The area associated with thea orbit
~see Fig. 3! is given by

Aa~eF!54p2(
k

$12u@eF2e2~k!#% ~11!

and the cyclotron effective mass is, from Eq.~7!,

mc
a52p\2rs

2~eF!, ~12!

wherers
2(eF), is the density-of-states per unit cell and sp

associated with thee2(k) band. Similarly, the area enclose
by theb orbit is

FIG. 3. a and b orbits on the intralayer Fermi surface in
k-(BEDT-TTF)2X material. The arrows indicate the motion o
holes on each orbit in the presence of a magnetic field perpendic
to the layers. The box determines the Brillouin-zone bounda
There is a small energy gap at the boundary and theb orbit is only
observed in magnetic oscillations due to magnetic breakdown
the b-(BEDT-TTF)2X family the Brillouin zone is twice as large
and there is noa orbit.
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TABLE I. Cyclotron effective masses predicted by tight-binding band structures with values of the hopping integrals given by d
Hückel calculations. EHA denotes the extended Hu¨ckel approximation. These masses are compared to values deduced from ma
oscillation experiments. The cyclotron masses are obtained from Eq.~7! with the density-of-states computed from the tight-binding Ham
tonian~8! for the given values of the hopping integralst1 andt2 and witht15t3. Note that the ratio of the masses for theb anda orbits in
Fig. 3 depends weakly on the band-structure parameters. Except for the second line, all the results are for ambient pressure.

t1 ~meV! t2 ~meV! Ref. mc
b/me mc*

b/me ~expt! mc
b/mc

a mc*
b/mc*

a~expt!

k-(BEDT-TTF)2Cu(SCN)2 31.3 23.0 26 8.5 6.5a 2.2 1.9a

7.4 kbar 40.5 24.8 26 7.4 ;3.5b 2.3 ;2.0
k-(BEDT-TTF)2Cu@N(CN)2#Br 61.7 32.7 18 4.6 6.4c 2.35 ?

62.1 42.3 29 4.4 6.4c 2.2 ?
ab initio 78.2 39.0 18 3.8 6.4c 2.35 ?
k-(BEDT-TTF)2Cu2(CN)3 50.1 53.0 29 4.6 4.0d 2.0 ?
k-(BEDT-TTF)2I3 70.0 40.5 29 4.1 3.9e 2.3 2.0

54.0 34.0 31 5.3 3.9e 2.3 2.0
k-(BETS)2GaCl4 ? ? ? 5.3f ? 1.6
k-(BETS)2C(CN)3 EHA ? 33 1.2 3.3g ? 1.9
u-(BEDT-TTF)2 I 3 42.0 64.0 34 2.2 3.6h 2.6 1.8
b-(BEDT-TTF)2I3 60.0 42.0 35 4.3 4.2i

aReference 10.
bReference 27.
cReference 28.
dReference 30.
eReference 3.
fReference 32.
gReference 33.
hReference 9.
iReference 36.
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Ab~eF!54p2(
k

$12u@eF2e1~k!#%

14p2(
k

$12u@eF2e2~k!#% ~13!

and the cyclotron mass is proportional to the total dens
of-states:

mc
b52p\2rs~eF!, ~14!

wherers(eF) is the total density-of-states per unit cell an
spin. Note that a minus sign comes in the above express
when we are considering the electron mass instead of
hole mass asme52mh , wheremh is the hole mass.

For the dispersion ~9! with t15t25t35t, Ivanov,
Yakushi, and Ugolkova14 have obtained analytical expre
sions for the density-of-states projected onto the upper
lower bands. If all energies are in units oft, the total density-
of-states per unit cell and spin is

r~23/2<e<21!5
2

p2qAt
KS 1

qD ,

r~21<e<3!5
2

p2At
K~q! ~15!

and, for the partial density-of-states associated with
lower band
-

ns
he

d

e

r2S 23

2
<e<21D5

2

p2qAt
KS 1

qD ,

r2~21<e<1!

5
2

p2At
FFarcsinS 1

2q
A@~52t2!~t11!#/2D ;qG ,

~16!

where q5A12(t21)3(t13)/(16t) with t5A2e13. K
andF are the complete elliptic integral and the elliptic int
gral of the first kind, respectively.

From the above expressions and Eq.~7! we obtain the
following cyclotron masses:mc

b/me50.23/t and mc
a/me

50.11/t, with t given in eV and we have used the intralay
unit cell area ofA5104 Å2. This givesmc

b/mc
a52 and it

turns out that this ratio is relatively insensitive to variatio
in the band-structure parameters. We have relaxed the
dition on the hopping integralst15t25t3, and, we have nu-
merically evaluated the partial density-of-states instead
using Eqs.~15! and ~16!. The ratio of the cyclotron masse
obtained from the effective dimer model for fixedt15t3 but
different values oft2 /t1 is, mc

b/mc
a52.4, 2.2, and 2.0, for

t2 /t150.5,0.7,1.0, respectively.
In order to have a realistic description of the layered m

terials we use the hopping amplitudes obtained from qu
tum chemistry calculations using the Hu¨ckel approximation
and, in some cases, results obtained from first-principle
culations. The hoppings of the effective dimer model,
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TABLE II. Comparison of the density-of-states at the Fermi energy~and the associated effective masse!
which is obtained from different methods of calculating band structure. LDA denotesab initio calculations
using the local-density approximation. EHA denotes the extended Hu¨ckel approximation and HA denote
values from Table I, based on the Hu¨ckel approximation. The cyclotron masses are calculated from
density-of-states using Eq.~7!. The density-of-statesr(eF) is given in units of states per unit cell per spin p
eV. Note that the Hu¨ckel method gives effective masses that are two to five times larger than the other
sophisticated methods.

LDA EHA HA Expt.
r(eF) mc

b/me r(eF) mc
b/me r(eF) mc

b/me mc*
b/me

k-(BEDT-TTF)2Cu(SCN)2 6.4a 2.6 4.2b 1.7 21.2 8.5 6.5
k-(BEDT-TTF)2Cu@N(CN)2#Br 6.9c 2.7 4.4b 1.7 11.7 4.6 6.4
b-(BEDT-TTF)2I3 ? 2.1b 1.6 5.6 4.3 4.2

aReference 37.
bReference 38.
cReference 39.
-
ee
he
nt
ul
le

to

s

by

e
te
th
ra
la
ifi

e
a

d

om
in
e
ec
of
c

e
ly
e
o

rs
i

n
b-
he
-

s is
e
t
le,
rgy

he

re
ch

ined

ons

e-
ron

the
which t15t3 and t1Þt2, are given in Table I. A more de
tailed discussion of this model and the relationship betw
t1 and t2 and the intermolecular hoppings calculated in t
Hückel approximation can be found in Ref. 2. A minor poi
is that if we denote the Coulomb repulsion in each molec
by U0, and the hopping amplitude between the molecu
within one dimer bytb , for U0@4tb ~strongly correlated
case!, the hopping amplitudes should be corrected by a fac
of 1/A2 with respect to the ones obtained from the Hu¨ckel
calculation. However, in the caseU0;4tb , this factor is
0.92 and the effect of correlations to the matrix element
small. Different calculations suggest that the ratioU0/4tb
;1, so that in Table I we multiply all the bare hoppings
0.92.

In Table I, we also give the cyclotron masses obtain
from Eq. ~7!, where the density-of-states has been compu
numerically for the different hoppings. It can be seen that
calculated cyclotron band masses are sensitive to the pa
eters and the values deduced from the parameters calcu
by different groups for the same material can vary sign
cantly. However, the calculated ratiomc

b/mc
a is relatively in-

sensitive to the parameters.
The band structures of the (BEDT-TTF)2X family have

been calculated by several different techniques and som
the results for the density-of-states at the Fermi energy
compared in Table II. The Hu¨ckel method is the simplest an
only considers thep orbitals and neglects alls orbitals. The
overlap integrals that are calculated are all scaled by s
empirical parameter and then used as hopping integrals
tight-binding band structure. It is generally acknowledg
that this method gives a good qualitative description of el
tronic properties~such as the symmetry and ordering
states! but cannot give a quantitative description of ele
tronic properties.15

The extended Hu¨ckel method16 treats bothp ands orbit-
als. Although it is more quantitatively reliable than th
Hückel approximation it still does not give a complete
quantitative description of organic molecules. It has be
used to calculate the band structure of a wide range of
ganic metals by Whangbo and Hoffman and co-workers~see
Ref. 17!.

The energy levels for a pair of BEDT-TTF dime
with the same geometrical arrangement as
n

e
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e
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n
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n

k-(BEDT-TTF)2Cu@N(CN)2#Br have been calculated by a
ab initio method. The tight-binding parameters for a Hu
bard model for the dimers is then evaluated by fitting t
energy levels to theab initio values. The resulting param
eters are similar to those obtained by an extended Hu¨ckel
calculation for the dimer pair.18 But the resulting density-of-
states is more than twice the results of extended Hu¨ckel for
the solid.

The most reliable method of calculating band structure
generally considered to beab initio methods based on th
local-density approximation~LDA !. Nevertheless, differen
groups still often obtain quite different results. For examp
values obtained for the density-of-states at the Fermi ene
in the fullerene metal K3C60 differ by as much as 50%.19

~Extended Hu¨ckel calculations do fall into this range.! Due
to the large number of atoms in a unit cell only a fewab
initio calculations have been attempted for t
(BEDT-TTF)2X materials.

Results for the density-of-states~and the corresponding
cyclotron masses! obtained using the three methods a
shown in Table II. Note the large variation in results for ea
of the materials. In particular, the Hu¨ckel method gives
masses that are two to five times larger than those obta
by the other more sophisticated methods.

V. THE CYCLOTRON MASS IN THE PRESENCE OF
INTERACTIONS

The above treatment neglected the effect of interacti
between the electrons. We now show that Eq.~7! has a natu-
ral generalization in the case of a Fermi liquid. The on
electron Green’s function in a general interacting elect
system is

G~k,v1 ih!5
1

v1 ih2e~k!2S~k,v!
~17!

in momentum space, whereS(k,v) is the electron self-
energy. In a Fermi liquid, near the quasiparticle poles,
Green’s function can be rewritten as

G~k,v!5
Zk

v2 ẽ~k!
, ~18!
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whereẽ(k) is the quasiparticle energy and

Zk5
1

12@]S~k,v!/]v#uv5 ẽ(k)

is the residue at the quasiparticle pole. Note that the ab
expression is true for a Fermi liquid, and for electrons w
momentum close to the Fermi surface for which ImS(k
→kF ,v→eF)→0. The spectral density is then given by

A~k,v!52
1

p
Im G~v1 ih!5

d@v2 ẽ~k!#

12@]S~k,v!/]v#uv5 ẽ(k)

.

~19!

Thus, the quasiparticle density-of-states at the Fermi ene
is

r̃~ ẽF!5(
k

d@ẽF2 ẽ~k!#

5(
k S 12

]S~k,v!

]v U
v5 ẽF

D A~k,ẽF!. ~20!

Müller-Hartmann20 showed that, if the self-energy is inde
pendent of momentum, then at zero temperature,

(
k

A~k,ẽF!5r~eF!,

the noninteracting density-of-states at the Fermi energy
in this caser̃( ẽF)5r(eF)/Z. Note that the quasiparticle
density-of-states is always enhanced because for a Ferm
uid

]S~k,v!

]v U
v5 ẽF

,0.

Some time ago, Luttinger21 showed that in an interactin
system with Fermi-liquid properties, the results of Lifsh
and Kosevich still describe the de Haas van Alphen osc
tions provided that the relevant quasiparticle quantities
used. Thus, Eq.~5! is replaced by

mc* 5
]Ã

]ẽF

,

where a tilde denotes renormalized quantities. In a qu
two-dimensional Fermi liquid, the area enclosed by the or
of the quasiparticles is

Ã~ ẽF!54p2(
k

u@ẽF2 ẽ~k!# ~21!

and so, we find that the cyclotron effective mass is

mc* 52p\2(
k

d@ẽF2 ẽ~k!#52p\2r̃s~ ẽF!. ~22!

Again, Eqs.~22! and ~20! show the cyclotron mass en
hancement produced by the factor appearing in Eq.~20!. The
same enhancement also appears in the specific-
coefficient.22 A further simplification is obtained for the cas
ve

gy

o

iq-

-
re

i-
ts

at

of a momentum independent self-energy, as then the cy
tron effective masses reduce to

mc* 52p2\2r~eF!/Z5mc /Z, ~23!

whereZ is the quasiparticle weight, which, in terms of th
self-energy, is

Z5S 12
]S~v!

]v U
v5 ẽF

D 21

.

In this case, the ratios of the cyclotron effective masses
sociated with the quasiparticles moving along different orb
mc*

b/mc*
a , should be the same as the ratios associated w

the noninteracting systemmc
b/mc

a .
A partial test of the momentum independent self-energ

provided by comparing the measured ratios of the renorm
ized cyclotron masses in different orbits with the cyclotr
band mass ratios. This is done in Table I. The relative c
sistency between the observed values of this ratio and
band-structure values suggests that if there are size
renormalizations due to many-body effects, then these re
malizations are not significantly different on the differe
parts of the Fermi surface. However, this consistency is o
a necessary condition but not sufficient for having a mom
tum independent self-energy, as cyclotron masses inc
averages over the Fermi surface and, therefore, cancella
of contributions from different parts of the Fermi surfa
may occur.

Furthermore, in Ref. 10, the effective masses
k-(BEDT-TTF)2Cu(SCN)2 were measured as the pressu
was increased from 1 bar to 20 kbar.mc*

b/me decreased
from 6.560.1 at 1 bar to 2.760.1 at 16.3 kbar.mc*

a/me

decreased from 3.560.1 at 1 bar to 1.460.1 at 16.3 kbar.
However, the ratiomc*

b/mc*
a has a constant value of 1.

within error.

VI. SPECIFIC HEAT

Measurements of the electronic specific heat in
(BEDT-TTF)2X crystals and Sr2RuO4 show a linear tem-
perature dependence at low temperatures, consistent w
Fermi-liquid description. The corresponding specific-he
coefficientg is given in Table III for some of these mater
als. This coefficient is related to the quasiparticle density-
states at the Fermi energyr̃( ẽF), @see Eq.~20!# by

g5
2p2kB

2

3
r̃~ ẽF!. ~24!

Since the quasiparticle density-of-states is also relate
the cyclotron effective mass by Eq.~22!, the measured
specific-heat coefficient can be used to calculate a co
sponding cyclotron effective mass. This has been done
Table III for a range of organic materials. The values o
tained for mc*

b/mc from specific-heat measurements agr
for k-(BEDT-TTF)2I3 and b-(BEDT-TTF)2I3 but not for
the materials with copper in the anion. Since this compari
does provide a quantitative test of a Fermi-liquid descripti
further careful measurements are justified, particularly o
wider range of materials.
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TABLE III. Comparison of the cyclotron effective massesm* b deduced from the measurements
magnetic oscillations associated with theb orbit and the masses deduced from the linear specific-h
coefficientg and Eqs.~7! and ~24!. A is the area of the unit cell within a layer andme is the free-electron
mass.

A(Å 2) m* b/me g@mJ/(K2 mol)# m* /me(g)

k-(BEDT-TTF)2Cu(SCN)2 104.0 6.560.110 256340 4.460.5
k-(BEDT-TTF)2Cu@N(CN)2#Br 108.6 5.441,6.428 226342, 256243 461
k-(BEDT-TTF)2I3 103.0 3.93 1961.544 3.460.3
b-(BEDT-TTF)2I3 56.3 4.260.236 246345 3.960.5
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Such a comparison was also done recently for Sr2RuO4 in
Ref. 4, where relation~22! was implicitly assumed, presum
ably based on its validity for a parabolic dispersion relatio
Our paper provides a rigorous justification for this compa
son. In Sr2RuO4 there are three distinct Fermi surfaces a
the associated cyclotron masses deduced from de Haas
Alphen oscillations weremc* /me53.4, 7.5, and 14.6 for the
a, b, and g orbits, respectively.23 From the above discus
sion, it follows that the specific-heat coefficient of Sr2RuO4
is related to the effective masses by

g5
pkB

2

3\2 ~mc*
a1mc*

b1mc*
g!, ~25!

which comes from the fact that the total density-of-state
just the sum of the density-of-states of the different Fe
surfaces. Evaluating Eq.~25! we obtain a specific-heat coe
ficient of 36.7 mJ/(K2 mol), which agrees with the mea
sured value24 of 37.4 mJ/(K2 mol).

VII. CONCLUSIONS

We now summarize our results and their implication
First, it was shown that in a quasi-two-dimensional meta
which the dispersion perpendicular to the layers can be
glected, the cyclotron effective mass for a particular orbit
a general band structure is simply related to the density
states at the Fermi energy associated with the relevant b
Second, it was shown that, due to Luttinger’s results fo
Fermi liquid, a similar relationship holds in the presence
interactions.

These results have a number of general application
layered metals that have Fermi-liquid properties at low te
peratures.

~i! In order to evaluate the effective mass from band str
ture it is not necessary to numerically evaluate the deriva
in Eq. ~5!, as has been done previously by a number of
thors. Instead Eq.~7! can be used together with the densit
of-states at the Fermi energy. This eliminates the need
perform the cumbersome task of repeating the band-struc
calculations for many different Fermi energies.

~ii ! We found that for model band structures describ
the familyk-(BEDT-TTF)2X, the ratio of the effective mas
for theb orbit to the mass for thea orbit is fairly insensitive
to the details of the band structure, having a value clos
two.

~iii ! Our results imply that a quantitative test of the Ferm
liquid description of a layered metal is to compare measu
.
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ments of the cyclotron effective mass to the linear coeffici
in the specific heat.

~iv! The agreement between the ratio of the different m
sured cyclotron masses and the ratio calculated from b
structure, suggests a momentum independent self-energ
though other experimental probes such as polarized Ra
scattering, photoemission spectra, and angular depen
magnetoresistance oscillations are needed before making
definitive conclusion.

Based on comparison with a wide range of materials,
conclude the following. First, the effective masses dedu
from magnetic oscillations and specific heat, are consis
for Sr2RuO4 and for two out of four of the organic materia
considered. For three out of four of the organic materials
which data is avalailable, the measured ratiomc*

b/mc*
a is

consistent with the band-structure ratiomc
b/mc

a . Further-
more, for thek-(BEDT-TTF)2 Cu(NCS)2 this ratio does not
change under pressure while the individual effective mas
decrease by a factor of 2.5. This suggests that the self-en
does not vary significantly over the different parts of t
Fermi surface. We also note that the significant variation
the effective masses with pressure cannot be explaine
terms of band structure; it predicts a small variation w
pressure.

A comparison of the results of band-structure calculatio
using a range of methods, found that they produced a la
range in values for the density-of-states~and thus the effec-
tive masses!. The Hückel method has often been used
estimate the hopping integrals in tight-binding band str
tures~as in Table I!. It is less sophisticated than the extend
Hückel method, which in turn is less sophisticated thanab
initio methods based on the local-density approximation.
suggest that the Hu¨ckel method is producing hopping inte
grals that are too small by a factor of 2 to 4. The best strat
to evaluate these integrals would be to fit a LDA band str
ture to a tight-binding dispersion, such as Eq.~9!. Such an
approach was recently taken for Sr2RuO4.25

We now come back to the central question of this pap
are the layered metals we have considered strongly co
lated? A definitive answer is not possible because of
large variation in values for the band cyclotron masses
have been calculated by different band-structure metho
However, we suggest that due to their greater sophisticat
the local-density approximation and extended Hu¨ckel ap-
proximation calculations give the most reliable values. W
suggest that the appropriate values for the band cyclo
masses are those calculated by the local-density approx
tion and extended Hu¨ckel approximation. The mass ratio
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given in Table II then imply thatmc*
b/mc;2.524, suggest-

ing appreciable quasiparticle renormalization due to ma
body effects. This is consistent with the strong temperat
dependence of the transport properties, discussed in det
Ref. 1.
y-
re
l in
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