Abstract

A half-filled-band Hubbard model on an anisotropic triangular lattice (t in two bond directions and t' in the other) is studied using an optimization variational Monte Carlo method, to consider the Mott transition and superconductivity arising in \kappa-BEDT-TTF_2X. Adopting wave functions with doublon-holon binding factors, we reveal that a first-order Mott (conductor-to-nonmagnetic insulator) transition takes place at U=U_c approximately of the band width, for a wide range of t'/t. This transition is not directly connected to magnetism. Robust d-wave superconductivity appears in a restricted parameter range: immediately below U_c and moderate strength of frustration (0.4\lsim t'/t\lsim 0.7), where short-range antiferromagnetic correlation sufficiently develops but does not come to a long-range order. The relevance to experiments is also discussed.Comment: 15 pages, 17 figures, submitted to J. Phys. Soc. Jp

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020