1,763 research outputs found

    The effect of reciprocity priming on organ donor registration intentions and behavior

    Get PDF
    Background: Internationally the demand for organ transplants far exceeds the available supply of donated organs. Purpose: We examine if a digital reciprocity prime based on reciprocal altruism can be used to increase organ donor registration intentions and behavior. Methods: 420 participants (223 females) from England and Scotland aged 18+ who were not currently registered organ donors were randomized by block allocation using a 1:1 ratio to receive either a reciprocity prime or control message. After manipulation, they were asked to indicate their organ donation intentions and whether or not they would like to be taken to an organ donation registration and information page. Results: In line with our previous work, participants primed with a reciprocity statement reported greater intent to register as an organ donor than controls (using a 7-point Likert scale where higher scores = greater intention; prime mean = 4.3 (1.6) vs. control mean = 3.7 (1.4), P =< .001, d =0.4 [95%CI = 0.21-0.59]). There was again however, no effect on behavior as rates of participants agreeing to receive the donation register web-link were comparable between those primed at 11% (n= 23/210) [95%CI = 7.4-16.0] and controls at 12% (n= 25/210) [95%CI = 8.1-17.1], X²(1) = 0.09, p = .759. Conclusions: Reciprocal altruism appears useful for increasing intention towards joining the organ donation register. It does not however appear to increase organ donor behavior

    Identification of novel subgroup a variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus

    Get PDF
    &lt;b&gt;BACKGROUND:&lt;/b&gt; The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C.&lt;p&gt;&lt;/p&gt; &lt;b&gt;RESULTS:&lt;/b&gt; Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C.&lt;p&gt;&lt;/p&gt; &lt;b&gt;CONCLUSIONS:&lt;/b&gt; Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established

    Faraday Rotation as a diagnostic of Galactic foreground contamination of CMB maps

    Full text link
    The contribution from the residuals of the foreground can have a significant impact on the temperature maps of the Cosmic Microwave Background (CMB). Mostly, the focus has been on the galactic plane, when foreground cleaning has taken place. However, in this paper, we will investigate the possible foreground contamination, from sources outside the galactic plane in the CMB maps. We will analyze the correlation between the Faraday rotation map and the CMB temperature map. The Faraday rotation map is dependent on the galactic magnetic field, as well as the thermal electron density, and both may contribute to the CMB temperature. We find that the standard deviation for the mean cross correlation deviate from that of simulations at the 99.9% level. Additionally, a comparison between the CMB temperature extrema and the extremum points of the Faraday rotation is also performed, showing a general overlap between the two. Also we find that the CMB Cold Spot is located at an area of strong negative cross correlation, meaning that it may be explained by a galactic origin. Further, we investigate nearby supernova remnants in the galaxy, traced by the galactic radio loops. These super nova remnants are located at high and low galactic latitude, and thus well outside the galactic plane. We find some correlation between the Faraday Rotation and the CMB temperature, at select radio loops. This indicate, that the galactic foregrounds may affect the CMB, at high galactic latitudesComment: 13 pages, 22 figures, 6 table

    Therapeutic vaccination of koalas harbouring endogenous koala retrovirus (KoRV) improves antibody responses and reduces circulating viral load

    Get PDF
    The long-term survival of the koala is under serious threat from multiple factors, including infectious disease agents such as Chlamydia and koala retrovirus (KoRV). KoRV is present in both exogenous and endogenous forms, depending on the geographical location of the population. In the northern half of Australia, it is present as an endogenous infection in all koalas, making a case for an urgent need to develop a therapeutic vaccine that might prevent KoRV-associated pathologies in these koalas. To this end, we determined the therapeutic effects of vaccinating koalas harbouring endogenous KoRV with a recombinant KoRV Env protein combined with a Tri-adjuvant. We found that vaccination led to a significant increase in circulating anti-KoRV IgG levels, as well as increase in neutralising antibodies. Our study also showed that post-vaccination antibodies were able to recognize epitopes on the Env protein that were unrecognised pre-vaccination, as well as resulting in an increase in the recognition of the previously recognised epitopes. The vaccine also induced antibodies that were cross-reactive against multiple KoRV-subtypes. Finally, we found a complete clearance of KoRV-A in plasma from koalas that had detectable levels of KoRV-A pre-vaccination. Similarly, there was a significant reduction in the expression of KoRV-B viral RNA levels post-vaccination. Collectively, this study showed that koalas harbouring endogenous KoRV can benefit from prophylactic vaccination against KoRV using a recombinant KoRV-A Env protein and that the mechanism of this protection might be through the boosting of natural anti-KoRV antibodies and expanding the breadth of the recognised epitopes.Olusola Olagoke, Bonnie L. Quigley, Farhid Hemmatzadeh, Galit Tzipori, and Peter Timm

    Emergence of order in self-assembly of the intrinsically disordered biomineralisation peptide n16N

    Get PDF
    We present the results of an aggregation study on the intrinsically disordered biomineralisation peptide n16N, which selects the aragonite polymorph of calcium carbonate and is expected to have aggregation-dependent structure and function. The peptide is a sub-sequence of the in vivo protein n16, with putative framework and polymorph selection roles in the nacre layer of pearl oyster (Pinctada fucata). Employing the intermediate-resolution coarse-grained protein model PLUM*, which has previously been validated with respect to n16N, we simulate assemblies of these peptide units for system sizes inaccessible to atomistic models. We use extensive conformational sampling to show that the configurational ensemble explored by n16N aggregates contains a significant proportion of ordered &beta;-structure, within which arrangement of monomers is consistent with a previous hypothesis on functionally distinct subdomains of n16N. We also study an n16N mutant which fails to aggregate in experimental studies and obtain very similar behaviour, the consequences of which are discussed

    Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction

    Full text link
    While it is empirically accepted that the fixed-node diffusion Monte-Carlo (FN-DMC) depends only weakly on the size of the one-particle basis sets used to expand its guiding functions, limits of this observation are not settled yet. Our recent work indicates that under the FN error cancellation conditions, augmented triple zeta basis sets are sufficient to achieve a benchmark level of 0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a possibility of truncation of the one-particle basis sets used in FN-DMC guiding functions that has no visible effect on the accuracy of the production FN-DMC energy differences. The proposed scheme leads to no significant increase in the local energy variance, indicating that the total CPU cost of large-scale benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte

    East Bay Coalition for the Homeless: Branding Study and Marketing Strategy

    Get PDF
    There are a number of potential positioning strategies. The two which make the most sense for the EBCH are to “position the EBCH away from others in the category” and to “position the EBCH as unique.” These strategies have the advantage of setting the EBCH apart from the other organizations that address homelessness. Occupying its own “position” in the minds of potential and current donors is not only an effective communications/marketing strategy but also a less costly one because it avoids head-to-head competition and comparisons

    Handheld Co-Axial Bioprinting: Application to in situ surgical cartilage repair

    Get PDF
    Three-dimensional (3D) bioprinting is driving major innovations in the area of cartilage tissue engineering. Extrusion-based 3D bioprinting necessitates a phase change from a liquid bioink to a semi-solid crosslinked network achieved by a photo-initiated free radical polymerization reaction that is known to be cytotoxic. Therefore, the choice of the photocuring conditions has to be carefully addressed to generate a structure stiff enough to withstand the forces phisiologically applied on articular cartilage, while ensuring adequate cell survival for functional chondral repair. We recently developed a handheld 3D printer called Biopen . To progress towards translating this freeform biofabrication tool into clinical practice, we aimed to define the ideal bioprinting conditions that would deliver a scaffold with high cell viability and structural stiffness relevant for chondral repair. To fulfill those criteria, free radical cytotoxicity was confined by a co-axial Core/Shell separation. This system allowed the generation of Core/Shell GelMa/HAMa bioscaffolds with stiffness of 200KPa, achieved after only 10seconds of exposure to 700mW/cm2 of 365nm UV-A, containing \u3e90% viable stem cells that retained proliferative capacity. Overall, the Core/Shell handheld 3D bioprinting strategy enabled rapid generation of high modulus bioscaffolds with high cell viability, with potential for in situ surgical cartilage engineering
    corecore