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An irritable bowel syndrome subtype defined by
species-specific alterations in faecal microbiota
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ABSTRACT
Background and aims Irritable bowel syndrome (IBS) is
a common functional gastrointestinal disorder that may
be triggered by enteric pathogens and has also been
linked to alterations in the microbiota and the host
immune response. The authors performed a detailed
analysis of the faecal microbiota in IBS and control
subjects and correlated the findings with key clinical and
physiological parameters.
Design The authors used pyrosequencing to determine
faecal microbiota composition in 37 IBS patients (mean
age 37 years; 26 female subjects; 15 diarrhoea-
predominant IBS, 10 constipation-predominant IBS and
12 alternating-type IBS) and 20 age- and gender-
matched controls. Gastrointestinal and psychological
symptom severity and quality of life were evaluated with
validated questionnaires and colonic transit time and
rectal sensitivity were measured.
Results Associations detected between microbiota
composition and clinical or physiological phenotypes
included microbial signatures associated with colonic
transit and levels of clinically significant depression in the
disease. Clustering by microbiota composition revealed
subgroups of IBS patients, one of which (n¼15) showed
normal-like microbiota composition compared with
healthy controls. The other IBS samples (n¼22) were
defined by large microbiota-wide changes characterised
by an increase of Firmicutes-associated taxa and
a depletion of Bacteroidetes-related taxa.
Conclusions Detailed microbiota analysis of a well-
characterised cohort of IBS patients identified several
clear associations with clinical data and a distinct subset
of IBS patients with alterations in their microbiota that
did not correspond to IBS subtypes, as defined by the
Rome II criteria.

INTRODUCTION
Irritable bowel syndrome (IBS) is a common
gastrointestinal (GI) disorder that affects 10e20%
of adults in industrialised countries.1 Although it
has a non-fatal prognosis, IBS patients report more
ailments than the general population and
commonly incur a diminution in quality of life.1

Characteristic symptoms include abdominal pain
and/or discomfort, bloating, distension and altered
bowel habits.1

No single unifying cause has been identified for
IBS, but there is recent evidence suggesting the
involvement of the gut microbiota. The clearest
evidence is provided by subjects who develop
IBS de novo following an episode of enteric

infectiondpostinfectious IBS. Postinfectious IBS
has been associated with a number of bacterial
species.2e4 This and the hypothesis that small
intestinal bacterial overgrowth might also
contribute to IBS symptomatology5 have moti-
vated investigation of antibiotics as therapeutic
agents in IBS.6 Large double-blind studies of some
antibiotics have shown an improvement (albeit
modest, though statistically significant) in IBS
symptoms. The improvement has been attributed
to a reduction in total bacterial load and, perhaps,
an associated suppression of certain causative
bacterial species.6 7

The gut microbiota of IBS subjects has thus
attracted considerable interest, and alterations in
microbiota composition have been linked to IBS
and IBS-related symptoms. To cope with the
heterogeneity in IBS symptoms,8 these studies
often employ the Rome criteria to identify
IBS subtypes (reviewed by Salonen et al).9 Their
meta-analysis of IBS microbiota, as determined by
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Significance of this study

What is already known on this subject?
< Irritable bowel syndrome (IBS) onset may follow

enteric infections.
< A low-grade inflammatory response has been

described in IBS.
< Various changes in the microbiota have been

described in IBS but their primacy has not been
defined.

What are the new findings?
< A detailed assessment of the faecal microbiota

in IBS does not reveal a uniform change in the
microbiota.

< Analysis of microbial populations in IBS reveals
distinct clusters, of which some overlap with
normal controls while others are quite different.

< An increased Firmicutes:Bacteroidetes ratio best
characterises those IBS subjects who differ
from normal populations.

< The microbial signature is related to the clinical
phenotype in a subset of IBS patients.

How might it impact on clinical practice in the
foreseeable future?
< Microbial fingerprinting may help to identify IBS

subpopulations with differing prognosis and
varied therapeutic responses.
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high-throughput methods, identified consistent microbiota
alterations associated with fluctuations in Firmicutes-associated
taxa; alterations in the proportions of the Bacteroidetes and
Proteobacteria phyla also featured in several studies.10e15

However, in studies to date, the phenotypic characterisation of
the subjects has often been suboptimal. For example, links to
symptom pattern and severity have not been clearly established.
Moreover, it is currently unclear if the gut microbiota alterations
found were characteristic of IBS patients in general or only to
subgroups thereof.

The aim of this study was, therefore, to identify differences in
the intestinal microbiota between healthy and IBS subjects in
a very well phenotyped cohort. Using faeces as a proxy for the
distal bowel, we sought to identify phylum, genus and species
level bacterial signatures of IBS. We further aimed to identify
operational taxonomic units (OTUs) associated with IBS and
their relationship to clinical patterns and physiological
measures.

METHODS
Recruitment of subjects
IBS patients fulfilling Rome II criteria16 were recruited from the
Gastroenterology Clinic, Sahlgrenska University Hospital,
Gothenburg, Sweden. The samples were collected between
January and December 2004 to cover a complete calendar year
and eliminate seasonal effects. All patients underwent appro-
priate diagnostic tests to rule out organic GI disorders as
described in the online supplementary methods. Patients with
other GI conditions explaining their symptoms, or with another
severe coexisting disease, were excluded. Of the 37 patients, 27
were on no medication during the study; 3 were on a proton
pump inhibitor, 2 used spasmolytics, 4 bulking agents, 4 selec-
tive serotonin reuptake inhibitors, 2 low dose tricyclics and 2
loperamide. We also recruited a group of healthy volunteers
without previous or current GI symptoms or history of a chronic
disease. These subjects were recruited through local advertise-
ment and completed a GI symptom questionnaire to ensure the
absence of current GI symptoms. Antibiotic treatment within
the month before stool collection was an exclusion criterion.
Subjects were not controlled for probiotic, prebiotic or synbiotic
use. The study was approved by the Regional Ethical Review
Board at the University of Gothenburg.

Patients who enrolled in the study completed the following
questionnaires to assess their GI and psychological symptoms,
as well as general quality of life (see online supplementary
methods): the Hospital Anxiety and Depression (HAD) Scale17;
Gastrointestinal Symptom Rating Scale-IBS18; Bristol Stool
Form Scaled1 week diary to assess stool form19; and the Short
Form-36 (SF-36).20 Some subjects (n¼36) also underwent
a rectal sensitivity test with a rectal barostat21 and colonic
transit time measurement using radiopaque markers (n¼28)22

(see online supplementary methods).

Statistical and clustering analysis
We sequenced approximately 30 000 16S rRNA gene V4 region
amplicons per subject (see online supplementary methods), and
determined the corresponding microbiota composition using
established bioinformatics processes.23 In brief, quality filtering
was applied using the Qiime settings of no ambiguous bases,
a mean quality score above 25, a mean window quality score
above 25, a maximum homopolymer run not exceeding a limit
of six and no mismatches in the primer. Similar sequences were
clustered at a 97% sequence identity into OTUs, which can be
treated as sequence-based bacterial divisions. The reads were

assigned to taxonomies using the Ribosomal Database Project
(RDP) classifier.24 A confidence value of 0.5 was considered
a positive identification. At each phylogenetic classification level,
the overall data from each subject was normalised by scaling to
an intensity of 1 in order to control for differing numbers of
reads. To visualise the data, we employed principal coordinates
analyses (PCoAs) based upon the Unifrac distances25; the
UniFrac measurement indicates the extent to which microbial
communities share branch length, based on a phylogenetic tree
of all the amplicon sequences in the combined dataset.
Secondary clustering analysis was carried out on the OTU
abundances by adding 0.000001 to remove zeros followed by
dual scaling a log transformed OTU dataset to limits of �3,3 and
using unsupervised hierarchical cluster analysis with the Pearson
correlation coefficient and average linkage. All sequence reads are
deposited at MG-RAST (Project ID: 152).
Subsequent feature selection was carried out using the

KruskaleWallis test. For phylum, class, order and family taxo-
nomic levels, correction for multiple testing was applied using
Holm’s method.26 For the species and genus level analysis, the
less stringent method of Benjamini and Hochberg was used.27

This method controls the false discovery rate and so is a less
stringent condition than the control of the family-wise error
rate. When applying statistics, a cut-off of 20% occupancy of
a taxa was used to remove rare or poorly measured species. This
means that a variable was removed from testing if it contained
46 or more zeros. Testing of rates of depression across the
IBS groups was carried out using the KruskaleWallis test
and confirmed in a pairwise manner using the asymptotic
WilcoxoneManneWhitney rank sum test.

Assigning species and Clostridium clusters
To confidently assign amplicon sequences to species level and
Clostridium clusters, we extracted 72 928 V4 sequences from the
123 332 full-length 16S rRNA genes with complete species
classifications (RDP release 10.23) using the same primer pair
locations as were used for the amplification. In brief, an associ-
ation table with species-specific cut-off BLAST scores was
designed from an all-against-all BLAST search of the extracted
V4 sequences. If the same-species score for a certain species was
higher than the score of the first hit against a different species,
then that species was considered assignable. The relaxed cut-off
threshold was then set as the recorded score of the first hit
against a different species, plus one. As this is less than the last
true positive, it introduces a small degree of ambiguity. This was
deemed necessary to maximise the number of species that could
potentially be identified, especially in situations where a species
had only one known V4 sequence. This methodology was
applied at the level of OTU where the representative sequences
were used to assign OTUs to species. In this way, a total of 32%
of reads were classified to 168 species. To test each of these
species, the associated OTUs were combined to generate a 168 *
57 dataset. A stricter cut-off score was also calculated as the
score of the last same-species hit just prior to the first hit against
a different species. The Clostridium clusters thresholds were
defined in a similar way using combined all-against-all BLAST
results from a list of species that were classified to Clostridium
clusters according to the literature.

RESULTS
Descriptive analysis
Fifty-seven subjects were enrolled: 37 IBS (mean age
37612 years (mean6SD); 26 female subjects) and 20 non-IBS
control subjects (mean age 3969 years; 13 female subjects).
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Based on Rome II criteria,8 12 of these subjects had alternating-
type IBS, 15 diarrhoea-predominant IBS and 10 constipation-
predominant IBS. Data from questionnaires and physiological
tests are summarised in online supplementary table 1. Time
since first symptoms was >5 years in 35 of the 37 IBS patients
and over a year in the remaining two. Using established HAD
cut-off values for clinically significant ($11) anxiety or depres-
sion, 11 and 8 patients had clinically significant anxiety and
depression, respectively (30% and 22%). Thirty-two (86%)
patients had SF-36 scores below 50 on the mental and/or
physical component scores, indicating reduced quality of life.
Based on normal values,21 22 11/36 patients had rectal hyper-
sensitivity, whereas colonic transit was rapid in 8, slow in 3 and
normal in 17 patients.

Identification of IBS subtypes by cluster analysis
Hierarchical clustering based on the Pearson correlation coeffi-
cient was applied to the OTU tables. This identified a readily
discernible split for a subsection of the IBS subjects, with two
clusters representing 22 of the 37 IBS microbiota datasets,
separating from the control samples (figure 1A). These clusters
were not associated with medication, body mass index (BMI),
total read numbers or Rome II categories (p value >0.05).
Weighted Unifrac principal coordinates analysis (PCoA) revealed
that these two clusters were clearly separated from each other
and the control samples and the remaining normal-like IBS
samples (figure 1B).

Analysis of a diversity (ie, diversity within a single micro-
biota) showed the IBS subjects, as a whole, to have average
microbiota diversity lower than healthy controls (figure 2A).
However, when the analysis was applied in a group-wise manner
(figure 2B), the normal-like IBS showed similar diversity levels as
the controls and the two IBS clusters showed different levels of
diversity. Cluster 1 showed a diminished diversity, while cluster
2 had increased diversity when compared with the control

samples. This difference in diversity could also be seen in the
number of species that could be confidently assigned, with
a median of 44 in cluster 1 compared with 53 in cluster 2.
Differing depths of sequencing can be excluded as a reason
for this observation since the average total read numbers
were higher in cluster 1 than cluster 2, although this was not
significant.
The separation of cluster 1 from cluster 2 was independent of

the separation from the control samples along the first axis
(figure 1B) but was significantly different from each other based
on permutational multivariate analysis of variance (PMANOVA)
with both weighted and unweighted Unifrac distances. We
again applied the PMANOVA on the Unifrac distances and
tested the two IBS clusters, the remaining IBS and the control
samples against each other. The IBS clusters were significantly
different from the remaining normal-like IBS samples, the
control samples and each other (unweighted Unifrac: p<0.005,
weighted Unifrac p<0.005). To further investigate clustering of
subjects by their microbiota composition, the phylum and genus
level datasets were visualised using pie charts (figure 3) and bar
charts (online supplementary figure 1). The most striking
feature was the change in the Firmicutes:Bacteroidetes (FB) ratio
between the groups at the phylum level and the similarity of the
normal-like IBS microbiota to the control samples, even at the
genus level (figure 3, online supplementary figure 1). Hereinafter,
the two IBS clusters will be collectively referred to as the high FB
ratio IBS and the remaining IBS as normal-like IBS.

Statistical analysis of the taxonomic level datasets
Multigroup analysis of the defined groups identified a number of
taxa that were present at significantly different relative
proportions between the high FB ratio IBS clusters, the normal-
like IBS and the controls. These differences can be described as
being between the high FB ratio IBS clusters and the controls, as
the normal-like IBS showed similar proportions of these taxa to

Figure 1 Clustering analysis of irritable bowel syndrome (IBS) and control samples. (A) Hierarchical trees based on scaled log transformed
operational taxonomic unit data. (B) Principal coordinates analysis of weighted Unifrac distances showing the controls (green), high Firmicutes:
Bacteroidetes (FB) ratio IBS (red) and normal FB ratio IBS (blue).
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the controls with only slight differences. Taxa increased in the
high FB ratio clusters were significantly enriched for Firmicutes-
associated taxa (table 1 and online supplementary table_2).
Bacteroidetes-associated taxa were decreased when compared
with the control subjects’ microbiota (table 2 and online
supplementary table_2). The exception to this trend was Spor-
obacter which had highest abundance in IBS cluster 2 but was
depleted in cluster 1. The most abundant Bacteroidetes-associated
genera were depleted in both clusters (Bacteroides (p<0.0001) and
Alistipes (p¼0.001)).

Phylum level analysis showed an increase in Actinobacteria
(p<0.0001). Bifidobacteriaceae (p<0.001) was associated with
a median of 95% of the reads in the phylum Actinobacteria. This
compared with Actinomycetaceae (p<0.001) and Coriobacteriaceae
(p<0.01) which were associated with less than 1% and 3% of
reads, respectively. Further investigation of the Bifidobacterium
result found that 95% of the associated reads mapped to one
OTU that was present in all control and 36 of the 37 IBS

samples. Performing a BLAST search using the 207 base pair
representative sequence against the RDP database provided
a 100% hit to Bifidobacterium adolescentis.
One genus that shows differential abundance in the data

presented in figure 3 is Faecalibacterium. Faecalibacterium praus-
nitzii abundance was also investigated using targeted quantita-
tive real-time PCR (online supplementary notes), in addition to
the pyrosequencing analysis. In both datasets, there was a small
increase in the abundance of this bacterium in the IBS samples
but significance testing showed that this increase was well
within the range of values expected, based on the high level of
variance associated with the bacterium prevalence. Interestingly,
the IBS sample variance was twice the variance in the control
samples.
A total of 163 species were confidently identified as discussed

in the Methods section. Of these, 11 species were associated
with the separation of the high FB ratio IBS clusters from the
healthy controls (table 3).

Figure 2 Faith’s phylogenetic diversity curves. a Diversity curves showing total branch length with SDs for each group, for each number of
sequences generated through rarefaction for (A) control and irritable bowel syndrome (IBS) samples and (B) control and IBS subgroups.

Figure 3 Visualisation of taxonomic
levels. Pie charts showing proportion of
reads in each phylum (top) and genus
(bottom) for the controls, normal-like
irritable bowel syndrome (IBS) and the
IBS clusters.
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Statistical analysis of the combined abundances of species
that belong to the Clostridium clusters identified Clostridium
cluster XIVa as being significantly differently abundant
across the groups, specifically characterised with an increased
abundance in IBS cluster 1 (p<0.0005).

OTU signatures for IBS subtypes
Statistical analysis identified 111 OTUs that were significantly
differentially abundant across the four groups (online supple-
mentary table_3). Phylogenetic assignments assigned the vast
majority of the OTUs that had higher abundances in the high

Table 1 Increased abundance taxa associated with high Firmicutes:Bacteroidetes (FB) ratio irritable bowel syndrome (IBS)

Controls Normal-like IBS IBS cluster 1 IBS cluster 2 p Value

Phylum

Firmicutes 55.7 (50e71.9) 56.1 (46.2e74) 81.4 (74.8e87.7) 80.4 (71e83.6) <0.0001

Actinobacteria 0.75 (0.27e1.14) 0.92 (0.15e1.88) 5.38 (3.69e7.18) 2.29 (1.64e2.55) <0.0001

Class

Clostridia 54.3 (46.6e67.3) 54 (44.6e68.9) 74.2 (71.5e81.7) 74.5 (65.3e79.2) <0.001

Actinobacteria 0.75 (0.27e1.14) 0.92 (0.15e1.88) 5.38 (3.69e7.18) 2.29 (1.64e2.55) <0.0001

Erysipelotrichi 0.8 (0.5e1.62) 1.26 (0.76e1.37) 2.17 (0.97e5.89) 1.9 (1.53e4.51) <0.01

Order

Clostridiales 54.2 (46.4e67.1) 53.7 (44.5e68.6) 74 (71.4e81.7) 74.2 (65.1e78.8) <0.001

Bifidobacteriales 0.71 (0.27e1.03) 0.9 (0.13e1.82) 5.08 (2.98e7.14) 1.55 (1.35e2.35) <0.001

Enterobacteriales 0.0047 (0e0.0081) 0.0067 (0.0037e0.011) 0.036 (0.009e0.087) 0.19 (0.13e0.5) <0.001

Actinomycetales 0.008 (0.004e0.016) 0.008 (0.005e0.016) 0.03 (0.015e0.04) 0.022 (0.02e0.047) <0.001

Coriobacteriales 0.014 (0.007e0.052) 0.013 (0.007e0.025) 0.0435 (0.01e0.13) 0.214 (0.161e0.308) <0.01

Bacillales 0 (0e0) 0 (0e0) 0.004 (0e0.0067) 0 (0e0.00195) <0.01

Family

Incertae sedis XIV 3.83 (2.89e8.18) 5.12 (3.47e5.49) 14.1 (7.18e20.3) 4.73 (3.86e5.69) <0.001

Bifidobacteriaceae 0.71 (0.27e1.03) 0.9 (0.13e1.82) 5.08 (2.98e7.14) 1.55 (1.35e2.35) <0.001

Enterobacteriaceae 0.0047 (0e0.0081) 0.0067 (0.0037e0.0108) 0.0362 (0.009e0.0868) 0.194 (0.132e0.504) <0.001

Actinomycetaceae 0.0076 (0.0036e0.0139) 0.0077 (0.0034e0.0133) 0.03 (0.0147e0.0381) 0.0217 (0.018e0.0405) <0.001

Staphylococcaceae 0 (0e0) 0 (0e0) 0.0034 (0e0.0055) 0 (0e0) <0.01

Coriobacteriaceae 0.014 (0.007e0.052) 0.013 (0.007e0.025) 0.0435 (0.01e0.13) 0.214 (0.161e0.308) <0.01

Incertae sedis XII 0 (0e0.0063) 0.0101 (0e0.03) 0 (0e0) 0.0087 (0e0.0458) <0.01

Genus

Papillibacter 0.14 (0.0875e0.28) 0.196 (0.14e0.282) 0.542 (0.44e0.701) 0.186 (0.156e0.255) <0.0001

Dialister 0.029 (0e0.128) 0.061 (0.0056e0.747) 1.47 (0.782e4.07) 0.441 (0.029e0.611) <0.0001

Bifidobacterium 0.71 (0.27e1.02) 0.894 (0.125e1.81) 5.07 (2.97e7.12) 1.54 (1.34e2.32) <0.001

Dorea 0.566 (0.269e0.845) 0.395 (0.315e0.56) 1.71 (0.925e2.91) 0.593 (0.433e1.03) <0.001

Blautia 3.83 (2.88e8.18) 5.12 (3.47e5.45) 14.1 (7.18-20.3) 4.69 (3.86-5.69) <0.001

Sporobacter* 0.837 (0.246e1.65) 0.805 (0.402e1.02) 0.0615 (0.015e0.4) 2.22 (1.59e2.5) <0.001

Actinomyces 0.006 (0.001e0.014) 0.0077 (0.0034e0.012) 0.03 (0.015e0.036) 0.019 (0.018e0.034) <0.001

Escherichia 0 (0e0.0076) 0.0036 (0.001e0.0084) 0.0255 (0e0.0827) 0.19 (0.0824e0.492) <0.001

Significant results from the four group KruskaleWallis analysis.
This table represents the taxa that have higher abundance in the high FB ratio IBS clusters when compared with the control samples.
Values are shown as the median and associated IQR for the percentage of reads for the taxa in each group.
*Sporobacter has both highest and lowest values in the IBS clusters but is presented in this table as having its highest value in IBS cluster 2.

Table 2 Increased abundance taxa associated with control samples

Controls Normal-like IBS IBS cluster 1 IBS cluster 2 p Value

Phylum

Bacteroidetes 40.6 (25.4e45.8) 40.1 (22e50) 13.8 (3.98e16.3) 10.2 (5.45e17.4) <0.0001

Class

Bacteroidia 38.9 (25.3e44.5) 40.1 (18.3e49.9) 13.7 (3.96e15.8) 10 (5.02e14.7) <0.0001

Order

Bacteroidales 38.9 (25.3e44.5) 40.1 (18.3e49.9) 13.7 (3.96e15.8) 10 (5.02e14.7) <0.0001

Family

Bacteroidaceae 16.2 (10.2e23.9) 17.8 (8.91e32.5) 5.55 (2.54e8.41) 3.83 (1.73e9.26) <0.0001

Porphyromonadaceae 6.1 (3.44e9.86) 3.42 (2.38e6.44) 1.53 (0.37e2.37) 1.59 (0.575e2.06) <0.001

Rikenellaceae 7.84 (5.87e10.8) 7.03 (4.29e10.8) 1.84 (0.49e4.66) 1.6 (0.77e1.93) <0.001

Genus

Odoribacter 0.3 (0.123e0.577) 0.147 (0.068e0.278) 0.013 (0.002e0.042) 0.104 (0.045e0.227) <0.0001

Bacteroides 16.2 (10.2e23.9) 17.8 (8.91e32.5) 5.55 (2.54e8.41) 3.83 (1.73e9.26) <0.0001

Alistipes 7.78 (5.7e10.3) 6.99 (4.23e10.8) 1.78 (0.491e4.5) 1.4 (0.707e1.91) <0.001

Significant results from the four group KruskaleWallis analysis.
This table represents the taxa that have higher abundance in the control samples when compared with the high Firmicutes:Bacteroidetes ratio IBS clusters.
Values are shown as the median and associated IQR for the percentage of reads for the taxa in each group.
IBS, irritable bowel syndrome.
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FB ratio clusters to Firmicutes-associated taxa. Bacteroidetes-
associated taxa were associated with OTUs that were more
abundant in the control samples.

Correlation of differential microbiota composition with clinical
data in IBS
Associations between the clinical data and composition of the
microbiota were tested with the Kendall rank correlation coef-
ficient within all IBS subjects and separately for the high FB IBS
subjects, and for each of the subgroups. The significant corre-
lations are reported in table 4. In total, eight clinical variables
showed associations across 21 taxa over the four groups of
subjects tested. Two phylum level associations that were
returned as significant involved multiple clinical characteristics
in the analyses. An increased abundance of Cyanobacteria was
associated with satiety, bloating and an increased total gastro-
intestinal symptom rating scale-IBS (GSCR-IBS) score. Proteo-
bacteria abundance was associated with an increased mental
component and an increased pain threshold.

Another 17 taxa were associated with prolonged colonic
transit times. These taxa can be summarised to two species and
three families that were associated with a prolongation of
colonic transit time and constipation. The order Actinomycetales
and the family Actinomycetaceae were inversely associated with
clinically significant depression indicating that people with IBS
without clinically significant depression carry a greater load
of this bacterium. Interestingly, the normal subjects carry
significantly less of this bacterium than the non-depressed IBS
(p value: 0.0017).

Clinical variables and IBS subtypes
The rate of clinically significant depression in the high FB ratio
IBS clusters was 2/22 (9%). This rate of clinically significant
depression is comparable with that in the general Swedish
population.28 This compares with the normal-like IBS group at
6/15 subjects or 40%. When tested using the HAD depression
scores, it was found that the difference was significant based on
the pairwise test between high FB ratio IBS clusters and normal-
like IBS (p¼0.02). The HAD depression score was the most
differentiating clinical variable between the high FB ratio IBS
and the normal-like IBS, evidenced by relationships between the
microbiota and clinical variables, when visualised by corre-
spondence analysis (figure 4). Correspondence analysis also
showed a high correlation between clinically significant depres-

sion and anxiety (r¼0.65, p value <0.00005). Other variables
were not as discriminating between the two groups, but there
are trends towards higher mental and physical component
scores (SF-36) and rectal discomfort and pain thresholds in the
high FB ratio IBS versus the normal-like IBS group (p>0.05).

DISCUSSION
We examined relationships between microbiota composition and
clinical and physiological parameters in a cohort of well-charac-
terised IBS patients, potentially facilitating mechanistic insights.
Not surprisingly, given the heterogeneity that is intrinsic to IBS,
clustering analysis of the microbiota data revealed different
populations of IBS subjects. These groups were significantly
different from each other. The first of these groups (n¼15)
clustered with the control samples and had no significantly
associated microbiota composition features when compared with
non-IBS controls. The second group consisted of two clusters
(figure 1) that separated from the control samples. These IBS
samples (n¼22) were defined by large microbiota-wide changes.
A number of associations were detected between microbiota
composition and clinical or physiological phenotypes.
Previous studies have shown that the majority of the IBS

samples formed a distinct cluster.10 29 However, to the best of
our knowledge, this is the first study to robustly define IBS
patients with no detectable changes in their faecal microbiota.

Correlation of differential microbiota composition with clinical
data in IBS
Of the various parameters examined, the presence or absence of
clinically significant depression was the single clinical feature
that segregated in parallel with microbiota composition findings.
Thus, while co-morbid depression was common among the
normal-like IBS group, the prevalence of clinically significant
depression among the high FB clusters was akin to the rate in
the general population. While this observation deserves further
study and requires confirmation, it does tempt one to speculate
that microbiota analysis may permit differentiation of IBS
patients into two groups: those in whom psychological comor-
bidity is highly prevalent and those in whom a more ‘organic’
pathophysiology, such as microbeehost immune interaction,
may be more operative.
Statistical analysis showed that certain bacterial phylotypes

were associated with clinical markers of IBS. Analysis of the IBS
microbiota and separate analyses of the two subgroups showed

Table 3 Species associated with high Firmicutes:Bacteroidetes (FB) ratio irritable bowel syndrome (IBS) versus control split

Species Controls Normal-like IBS IBS cluster 1 IBS cluster 2 p Value

Most abundant in high FB ratio IBS-associated

Eubacterium hallii 0.74 (0.42e1.2) 0.91 (0.78e1.52) 4.59 (2.24e7.08) 0.97 (0.57e1.66) <0.0001

Clostridium innocuum 0.0048 (0e0.0087) 0.0078 (0.0034e0.0144) 0.0428 (0.0242e0.0936) 0 (0e0.004) <0.0001

Sporobacter termitidis* 0.616 (0.179e1.02) 0.448 (0.229e0.735) 0.048 (0.009e0.327) 1.48 (1.06e1.92) <0.01

Eubacterium desmolans 0.095 (0.075e0.172) 0.15 (0.053e0.258) 0.398 (0.222e0.454) 0.282 (0.133e0.767) <0.01

Eubacterium eligens 0.483 (0.174e0.71) 0.298 (0.015e0.834) 0.0035 (0e0.0456) 1.75 (0.0397e4.12) <0.01

Eubacterium siraeum* 0.339 (0.028e1.16) 0.285 (0.017e1.26) 0.0043 (0e0.0182) 0.457 (0.146e1.35) <0.01

Most abundant in control samples

Odoribacter splanchnicus 0.26 (0.12e0.49) 0.15 (0.068e0.27) 0.007 (0e0.042) 0.104 (0.045e0.22) <0.0001

Alistipes putredinis 3.44 (2.03e6.31) 2.79 (1.67e4.45) 0.59 (0.007e1.55) 0.503 (0.095e1.15) <0.001

Barnesiella intestinihominis 0.87 (0.24e1.92) 0.22 (0.007e0.489) 0.0027 (0e0.243) 0.26 (0.1e0.67) <0.001

Bacteroides caccae 0.33 (0.1e1.05) 0.28 (0.006e0.596) 0 (0e0.052) 0.1 (0.018e0.175) <0.01

Bacteroides stercoris 0.025 (0.0014e0.7) 0 (0e0.0037) 0 (0e0) 0 (0e0.0153) <0.01

Species showing significant differences in abundance across the four groups as defined from the KruskaleWallis analysis.
Values are shown as the median and associated IQR for the percentage of reads for the taxa in each group.
*Sporobacter termitidis and Eubacterium siraeum have both the highest and lowest values in the IBS clusters but are presented in this table as having their highest values in IBS cluster 2.
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microbial associations with colonic transit time, satiety,
bloating, rectal pain threshold and depression.

Comparison with previous studies
Other groups have observed a significantly lower proportion of
Bacteroides spp. in IBS patients than in healthy controls, but at
the Bacteroidetes phylum level, no difference was detected
between the groups.10 30 In the present study, we observed
a reduction of Bacteroidetes that was confined to a high FB ratio
subset of IBS patients. There was a general decrease in the two
most common genera (Bacteroides and Alistipes). Similarly, at the
OTU level, the Bacteroidetes-related genera involved were iden-
tified as Bacteroides, Alistipes and Parabacteroides.

Increased Firmicutes abundance has previously been recorded in
IBS subjects.10e12 15 In our current study, this was combined
with a decrease in the abundance of Bacteroidetes. This increase
in the ratio of Firmicutes to Bacteroidetes was associated with
over half of the IBS samples studied. The remaining normal FB
ratio IBS samples had no detectable changes in the faecal
microbiota.

In common with previous studies using molecular methods,
we sampled the IBS microbiota at a single time-point. The
intestinal microbiota is stable in healthy adults, including
older adults in whom the microbiota is considered to be in
flux,23 but it will be interesting in future studies to monitor the
microbiota of IBS patients in sequential samples, including
those which cover periods of remission, relapse and changes in
bowel function.

Inflammation-linked microbiota
Elevated levels of serum antibodies specific for bacterial flagellins
have been detected in postinfectious IBS patients.31 The possi-
bility that flagellin-producing species might be relevant to the
pathophysiology of IBS is supported by the documentation of
a low level of mucosal inflammation within the GI tract, as well
as a systemic pro-inflammatory cytokine phenotype, in all
subtypes of IBS.32 Furthermore, though postinfectious IBS only
explains a minority of cases of IBS, the documentation of
the occurrence of IBS following bacteriologically-confirmed
gastroenteritis in several studies2e4 represents a clear link

Table 4 Associations between clinical characteristics of irritable bowel syndrome (IBS) and taxa

Clinical parameters and
physiological tests Subset tested

Kendal correlation
coefficient p Value

BenjaminieHochberg
correction

Phylum

Proteobacteria Mental component (SF-36) IBS clusters 1 and 2 0.5 <0.005 <0.05

Proteobacteria Pain threshold (mm Hg) IBS cluster 2 0.9 <0.005 <0.05

Cyanobacteria Satiety (GSRS) Full IBS cohort 0.37 <0.005 <0.05

Cyanobacteria GSRS total score Full IBS cohort 0.36 <0.005 <0.05

Cyanobacteria Bloating (GSRS) Full IBS cohort 0.36 <0.005 <0.05

Euryarchaeota Colonic transit time (days) Full IBS cohort 0.46 <0.005 <0.05

Lentisphaerae Constipation (GSRS) Full IBS cohort 0.53 <0.0001 <0.001

Lentisphaerae Constipation (GSRS) Normal-like IBS 0.77 <0.0005 <0.005

Class

Methanobacteria Colonic transit time (days) Full IBS cohort 0.46 <0.005 <0.05

Opitutae Constipation (GSRS) Full IBS cohort 0.46 <0.001 <0.01

Lentisphaeria Constipation (GSRS) Full IBS cohort 0.53 <0.0001 <0.005

Lentisphaeria Constipation (GSRS) Normal-like IBS 0.77 <0.0005 <0.01

Order

Puniceicoccales Constipation (GSRS) Full IBS cohort 0.46 <0.001 <0.01

Methanobacteriales Colonic transit time (days) Full IBS cohort 0.46 <0.005 <0.05

Actinomycetales Depression (HAD) Full IBS cohort �0.4 <0.001 <0.05

Victivallales Constipation (GSRS) Full IBS cohort 0.53 <0.0001 <0.005

Victivallales Constipation (GSRS) Normal-like IBS 0.77 <0.0005 <0.01

Family

Puniceicoccaceae Constipation (GSRS) Full IBS cohort 0.46 <0.001 <0.05

Peptostreptococcaceae Constipation (GSRS) Full IBS cohort �0.36 <0.005 <0.05

Methanobacteriaceae Colonic transit time (days) Full IBS cohort 0.46 <0.005 <0.05

Actinomycetaceae Depression (HAD) Full IBS cohort �0.4 <0.001 <0.05

Victivallaceae Constipation (GSRS) Full IBS cohort 0.53 <0.0001 <0.005

Victivallaceae Constipation (GSRS) Normal-like IBS 0.77 <0.0005 <0.05

Desulfohalobiaceae Constipation (GSRS) Full IBS cohort 0.43 <0.005 <0.05

Desulfohalobiaceae Colonic transit time (days) Full IBS cohort 0.5 <0.005 <0.05

Genus

Odoribacter Constipation (GSRS) Full IBS cohort 0.41 <0.001 <0.05

Victivallis Constipation (GSRS) Full IBS cohort 0.53 <0.0001 <0.01

Victivallis Constipation (GSRS) Normal-like IBS 0.77 <0.0005 <0.05

Species

Odoribacter splanchnicus Constipation (GSRS) Full IBS cohort 0.43 <0.0005 <0.05

Victivallis vadensis Constipation (GSRS) Full IBS cohort 0.52 <0.0001 <0.01

Victivallis vadensis Constipation (GSRS) Normal-like IBS 0.77 <0.0005 <0.05

Significant results from analysis of subsets of IBS patients.
Values are correlations between the taxa and clinical parameters and physiological tests.
Pain thresholds are based on the rectal sensitivity test.
GSRS, Gastrointestinal Symptom Rating Scale; HAD, Hospital Anxiety and Depression Scale; SF-36, short form with 36 quality of life questions.
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between exposure to a bacterium, a sustained inflammatory
response and IBS.

Of the 73 OTUs of the phylum Firmicutes that were differ-
entially expressed across the groups, 70 were Clostridia/Clos-
tridiales. The genus Lachnospiraceae incertae sedis accounted for 18
of these and has been shown to be enriched in diarrhoea-
predominant IBS patients.33 Species belonging to L incertae sedis
are known to express inflammatory flagellin proteins.34 These
inflammatory flagellin-producing species were also classified as
Clostridium cluster XIVa.

Clostridium cluster XIVa has also previously been shown to be
associated with IBS.10 Our study noted an increased abundance
of Clostridium cluster XIVa as being associated with the high FB
ratio IBS.

Short-chain fatty acid producers and IBS
A number of studies have shown an increase in the amount of
short-chain fatty acids (SCFAs) in IBS.15 35 Butyrate and acetate
have many beneficial effects in relation to oxidative stress and
inflammation,36 energy for the colonic epithelium,37 modulation
of cell proliferation38 and protection against GI infections.39 40

However, butyrate promoted visceral hypersensitivity in a rat
model41 and the butyrate-producing associated Clostridium
cluster XIVa group42 and some specific butyrate-producing
species such as Eubacterium hallii and Eubacterium desmolans43

were associated with IBS in this study. Taken together,
these findings could explain the sensory dysfunction and poor
tolerance of gas retention associated with IBS.44

Perhaps of greater significance is that the production of SCFAs
has the ability to lower the pH in the colon.45 Duncan et al

showed that tolerance of a reduced pH among the Firmicutes spp.
varied for different species but, overall, the Clostridium cluster
XIVa group showed the smallest reduction in growth rate, while
the butyrate-producing associated Clostridium cluster IV growth
rates were dramatically reduced.45 We detected no significant
change in the overall abundance of Clostridium cluster IV.
B adolescentis are prominent in the adult gut microbiota.

B adolescentis produces acetic acid and lactate, indicating it as
a potential source of the increased SCFAs in IBS.46 Although we
did not control for probiotics and probiotic use may have
occurred in this population, we believe it unlikely that this
increase in B adolescentis originated from an extraneous origin.
Duncan et al45 and Collado and Sanz47 tested the tolerance
of Bifidobacterium spp. to acidic pH conditions and showed that
B adolescentis showed no deterioration in their growth rate but
other species, including more abundant species, showed
a reduced abundance when exposed to acidic conditions. These
observations may explain why we recorded a significant increase
in B adolescentis but not other species of Bifidobacterium in our
analysis and the apparent disagreement with previous studies
that demonstrated a reduction in Bifidobacterium, particularly
B catenulatum, in IBS.13 14 48 It is unclear why our procedure
apparently favoured detection of B adolescentis above other
species, but differences in primer binding, amplification or DNA
extraction efficiency for each species were likely contributors.
The reduction of Bacteroides proportion has been noted in this

study and, interestingly, has also been associated with IBS.49

Bacteroidetes spp. experience progressive inhibition at reduced
pH values.45 At least one Bacteroides spp. is known to have
beneficial effects on mucosal tolerance.50

Figure 4 Clinical information.
Correspondence analysis showing high
Firmicutes:Bacteroidetes (FB) ratio
irritable bowel syndrome (IBS) (red) and
normal-like IBS (blue) patients in the top
panel and the clinical variables in the
lower panel. GSRS, Gastrointestinal
Symptom Rating Scale; HAD, Hospital
Anxiety and Depression Scale; SF-36,
short-form 36.
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Antibiotic or probiotic consumption in IBS
We controlled for antibiotic use within 1 month of faecal
sampling. While most constituents of the gut microbiota return
to preantibiotic levels within 4 weeks, we concede that recent
data shows that some species may fail to recover to preantibiotic
levels for much longer periods after the end of antibiotic
therapy.51 Given these findings, and the knowledge that Bifido-
bacterium spp. and some Bacteroides spp. that have been shown to
be associated with IBS may be especially sensitive to longer-term
effects of antibiotic use, we would advocate more prolonged
antibiotic-free periods prior to faecal sampling in future studies.
However, given the ubiquity of antibiotic use in the community
and the advocacy, by some, of antibiotics for the treatment of
IBS, this may be challenging in practice. We did not control for
probiotic consumption, which might theoretically cause
confounding effects upon microbiota composition. However,
recent studies in our laboratory (Riboulet-Bisson, O’Toole et al,
submitted) show very modest effects on the intestinal micro-
biota of mice and pigs administered large doses of bacteriocin-
producing probiotic lactobacilli, and the effects in humans are
also modest.52 53

CONCLUSION
Recently, the microbiota in IBS has been linked to immunolog-
ical alterations and low grade inflammation in IBS. This study
used a comparatively large number of well-characterised IBS
subjects and deep level pyrosequencing to identify candidate
microbiota elements that contribute to the pathology of IBS.
This is the first study to define patient subgroups whose
microbiota had markedly different characteristics and to asso-
ciate microbial signatures to clinical variables within these
subgroups. We have extended previous studies and provided new
bacterial gut signatures and associations; some will require
further investigation to fully define their role in IBS.
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