26 research outputs found

    Arabidopsis Plasmodesmal Proteome

    Get PDF
    The multicellular nature of plants requires that cells should communicate in order to coordinate essential functions. This is achieved in part by molecular flux through pores in the cell wall, called plasmodesmata. We describe the proteomic analysis of plasmodesmata purified from the walls of Arabidopsis suspension cells. Isolated plasmodesmata were seen as membrane-rich structures largely devoid of immunoreactive markers for the plasma membrane, endoplasmic reticulum and cytoplasmic components. Using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer, 1341 proteins were identified. We refer to this list as the plasmodesmata- or PD-proteome. Relative to other cell wall proteomes, the PD-proteome is depleted in wall proteins and enriched for membrane proteins, but still has a significant number (35%) of putative cytoplasmic contaminants, probably reflecting the sensitivity of the proteomic detection system. To validate the PD-proteome we searched for known plasmodesmal proteins and used molecular and cell biological techniques to identify novel putative plasmodesmal proteins from a small subset of candidates. The PD-proteome contained known plasmodesmal proteins and some inferred plasmodesmal proteins, based upon sequence or functional homology with examples identified in different plant systems. Many of these had a membrane association reflecting the membranous nature of isolated structures. Exploiting this connection we analysed a sample of the abundant receptor-like class of membrane proteins and a small random selection of other membrane proteins for their ability to target plasmodesmata as fluorescently-tagged fusion proteins. From 15 candidates we identified three receptor-like kinases, a tetraspanin and a protein of unknown function as novel potential plasmodesmal proteins. Together with published work, these data suggest that the membranous elements in plasmodesmata may be rich in receptor-like functions, and they validate the content of the PD-proteome as a valuable resource for the further uncovering of the structure and function of plasmodesmata as key components in cell-to-cell communication in plants

    Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis

    Get PDF
    The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß- glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN).This work was funded by grants BIO2008-00839, BIO2011-27526 and CSD2007-0057 from Ministerio de Ciencia e Innovacion of Spain to J.L. A fellowship/contract of the FPU program of the Ministerio de Educacion y Ciencia (Spain) funded R.M. work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Mir Moreno, R.; Leon Ramos, J. (2014). Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis. PLoS ONE. 1(9):1-14. https://doi.org/10.1371/journal.pone.0087216S11419Sauerbrunn, N., & Schlaich, N. L. (2004). PCC1 : a merging point for pathogen defence and circadian signalling in Arabidopsis. Planta, 218(4), 552-561. doi:10.1007/s00425-003-1143-zSEGARRA, S., MIR, R., MARTÍNEZ, C., & LEÓN, J. (2009). Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Plant, Cell & Environment, 33(1), 11-22. doi:10.1111/j.1365-3040.2009.02045.xVenancio, T. M., & Aravind, L. (2009). CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics, 26(2), 149-152. doi:10.1093/bioinformatics/btp647Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology, 13(5), 571-577. doi:10.1016/j.pbi.2010.07.001Seo, M., Nambara, E., Choi, G., & Yamaguchi, S. (2008). Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology, 69(4), 463-472. doi:10.1007/s11103-008-9429-yDe Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040Bastian, R., Dawe, A., Meier, S., Ludidi, N., Bajic, V. B., & Gehring, C. (2010). Gibberellic acid and cGMP-dependent transcriptional regulation inArabidopsis thaliana. Plant Signaling & Behavior, 5(3), 224-232. doi:10.4161/psb.5.3.10718Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014Arc, E., Galland, M., Cueff, G., Godin, B., Lounifi, I., Job, D., & Rajjou, L. (2011). Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. PROTEOMICS, 11(9), 1606-1618. doi:10.1002/pmic.201000641Dill, A., Thomas, S. G., Hu, J., Steber, C. M., & Sun, T. (2004). The Arabidopsis F-Box Protein SLEEPY1 Targets Gibberellin Signaling Repressors for Gibberellin-Induced Degradation. The Plant Cell, 16(6), 1392-1405. doi:10.1105/tpc.020958Wang, F., & Deng, X. W. (2011). Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Research, 21(9), 1286-1294. doi:10.1038/cr.2011.118Hotton, S. K., & Callis, J. (2008). Regulation of Cullin RING Ligases. Annual Review of Plant Biology, 59(1), 467-489. doi:10.1146/annurev.arplant.58.032806.104011Cope, G. A. (2002). Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1. Science, 298(5593), 608-611. doi:10.1126/science.1075901Gusmaroli, G., Figueroa, P., Serino, G., & Deng, X. W. (2007). Role of the MPN Subunits in COP9 Signalosome Assembly and Activity, and Their Regulatory Interaction with Arabidopsis Cullin3-Based E3 Ligases. The Plant Cell, 19(2), 564-581. doi:10.1105/tpc.106.047571Serino, G., & Deng, X.-W. (2003). THECOP9 SIGNALOSOME: Regulating Plant Development Through the Control of Proteolysis. Annual Review of Plant Biology, 54(1), 165-182. doi:10.1146/annurev.arplant.54.031902.134847Stratmann, J. W., & Gusmaroli, G. (2012). Many jobs for one good cop – The COP9 signalosome guards development and defense. Plant Science, 185-186, 50-64. doi:10.1016/j.plantsci.2011.10.004Lozano-Juste, J., & León, J. (2011). Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis. Plant Physiology, 156(3), 1410-1423. doi:10.1104/pp.111.177741Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34Fromont-Racine, M., Rain, J.-C., & Legrain, P. (1997). Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genetics, 16(3), 277-282. doi:10.1038/ng0797-277Belda-Palazón B, Ruiz L, Martí E, Tárraga S, Tiburcio AF, et al.. (2012) Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells. PLoS One 7(10), e46907.Simon, R., Igeño, M. I., & Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature, 384(6604), 59-62. doi:10.1038/384059a0Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.xKyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105-132. doi:10.1016/0022-2836(82)90515-0Marmagne, A., Rouet, M.-A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., … Ephritikhine, G. (2004). Identification of New Intrinsic Proteins inArabidopsisPlasma Membrane Proteome. Molecular & Cellular Proteomics, 3(7), 675-691. doi:10.1074/mcp.m400001-mcp200Nühse, T. S., Stensballe, A., Jensen, O. N., & Peck, S. C. (2004). Phosphoproteomics of the Arabidopsis Plasma Membrane and a New Phosphorylation Site Database. The Plant Cell, 16(9), 2394-2405. doi:10.1105/tpc.104.023150Kobayashi, Y., & Weigel, D. (2007). Move on up, it’s time for change mobile signals controlling photoperiod-dependent flowering. Genes & Development, 21(19), 2371-2384. doi:10.1101/gad.1589007Jaeger, K. E., & Wigge, P. A. (2007). FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology, 17(12), 1050-1054. doi:10.1016/j.cub.2007.05.008Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009Mir, R., Hernández, M. L., Abou-Mansour, E., Martínez-Rivas, J. M., Mauch, F., Métraux, J.-P., & León, J. (2013). Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. Journal of Experimental Botany, 64(11), 3385-3395. doi:10.1093/jxb/ert177Nordgård, O., Dahle, Ø., Andersen, T. Ø., & Gabrielsen, O. S. (2001). JAB1/CSN5 interacts with the GAL4 DNA binding domain: A note of caution about two-hybrid interactions. Biochimie, 83(10), 969-971. doi:10.1016/s0300-9084(01)01329-3Kwok, S. F., Staub, J. M., & Deng, X.-W. (1999). Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex 1 1Edited by J. Karn. Journal of Molecular Biology, 285(1), 85-95. doi:10.1006/jmbi.1998.2315Nezames, C. D., & Deng, X. W. (2012). The COP9 Signalosome: Its Regulation of Cullin-Based E3 Ubiquitin Ligases and Role in Photomorphogenesis. Plant Physiology, 160(1), 38-46. doi:10.1104/pp.112.198879Moon, J., Parry, G., & Estelle, M. (2004). The Ubiquitin-Proteasome Pathway and Plant Development. The Plant Cell, 16(12), 3181-3195. doi:10.1105/tpc.104.161220Dreher, K., & Callis, J. (2007). Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany, 99(5), 787-822. doi:10.1093/aob/mcl255Parry, G., & Estelle, M. (2004). Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Seminars in Cell & Developmental Biology, 15(2), 221-229. doi:10.1016/j.semcdb.2003.12.003Wee, S., Geyer, R. K., Toda, T., & Wolf, D. A. (2005). CSN facilitates Cullin–RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nature Cell Biology, 7(4), 387-391. doi:10.1038/ncb1241Kuramata, M., Masuya, S., Takahashi, Y., Kitagawa, E., Inoue, C., Ishikawa, S., … Kusano, T. (2008). Novel Cysteine-Rich Peptides from Digitaria ciliaris and Oryza sativa Enhance Tolerance to Cadmium by Limiting its Cellular Accumulation. Plant and Cell Physiology, 50(1), 106-117. doi:10.1093/pcp/pcn175Zeng, W., Melotto, M., & He, S. Y. (2010). Plant stomata: a checkpoint of host immunity and pathogen virulence. Current Opinion in Biotechnology, 21(5), 599-603. doi:10.1016/j.copbio.2010.05.006Wigge, P. A. (2011). FT, A Mobile Developmental Signal in Plants. Current Biology, 21(9), R374-R378. doi:10.1016/j.cub.2011.03.038Kardailsky, I. (1999). Activation Tagging of the Floral Inducer FT. Science, 286(5446), 1962-1965. doi:10.1126/science.286.5446.1962Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-yGalvao, V. C., Horrer, D., Kuttner, F., & Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 139(21), 4072-4082. doi:10.1242/dev.080879Cerdán, P. D., & Chory, J. (2003). Regulation of flowering time by light quality. Nature, 423(6942), 881-885. doi:10.1038/nature01636Guo, H. (1998). Regulation of Flowering Time by Arabidopsis Photoreceptors. Science, 279(5355), 1360-1363. doi:10.1126/science.279.5355.1360Liu, B., Zuo, Z., Liu, H., Liu, X., & Lin, C. (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes & Development, 25(10), 1029-1034. doi:10.1101/gad.2025011Weidler, G., zur Oven-Krockhaus, S., Heunemann, M., Orth, C., Schleifenbaum, F., Harter, K., … Batschauer, A. (2012). Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A. The Plant Cell, 24(6), 2610-2623. doi:10.1105/tpc.112.09821

    Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots

    Get PDF
    BACKGROUND: Salt tolerance in grapevine is associated with chloride (Cl-) exclusion from shoots; the rate-limiting step being the passage of Cl- between the root symplast and xylem apoplast. Despite an understanding of the physiological mechanism of Cl- exclusion in grapevine, the molecular identity of membrane proteins that control this process have remained elusive. To elucidate candidate genes likely to control Cl- exclusion, we compared the root transcriptomes of three Vitis spp. with contrasting shoot Cl- exclusion capacities using a custom microarray. RESULTS: When challenged with 50 mM Cl-, transcriptional changes of genotypes 140 Ruggeri (shoot Cl- excluding rootstock), K51-40 (shoot Cl- including rootstock) and Cabernet Sauvignon (intermediate shoot Cl- excluder) differed. The magnitude of salt-induced transcriptional changes in roots correlated with the amount of Cl- accumulated in shoots. Abiotic-stress responsive transcripts (e.g. heat shock proteins) were induced in 140 Ruggeri, respiratory transcripts were repressed in Cabernet Sauvignon, and the expression of hypersensitive response and ROS scavenging transcripts was altered in K51-40. Despite these differences, no obvious Cl- transporters were identified. However, under control conditions where differences in shoot Cl- exclusion between rootstocks were still significant, genes encoding putative ion channels SLAH3, ALMT1 and putative kinases SnRK2.6 and CPKs were differentially expressed between rootstocks, as were members of the NRT1 (NAXT1 and NRT1.4), and CLC families. CONCLUSIONS: These results suggest that transcriptional events contributing to the Cl- exclusion mechanism in grapevine are not stress-inducible, but constitutively different between contrasting varieties. We have identified individual genes from large families known to have members with roles in anion transport in other plants, as likely candidates for controlling anion homeostasis and Cl- exclusion in Vitis species. We propose these genes as priority candidates for functional characterisation to determine their role in chloride transport in grapevine and other plants.Sam W Henderson, Ute Baumann, Deidre H Blackmore, Amanda R Walker, Rob R Walker and Matthew Gilliha

    Ion homeostasis in the Chloroplast

    Full text link
    peer reviewedThe chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess, homeostasis mechanisms must be tightly regulated. Here, we describe the needs for nutrient ions in the chloroplast and briefly highlight their functions in the chloroplastidial metabolism. We further discuss the impact of nutrient deficiency on chloroplasts and the acclimation mechanisms that evolved to preserve the photosynthetic apparatus. We finally present what is known about import and export mechanisms for these ions. Whenever possible, a comparison between cyanobacteria, algae and plants is provided to add an evolutionary perspective to the description of ion homeostasis mechanisms in photosynthesis

    Nettoyage et désinfection : Vers des procédures plus sobres et moins polluantes pour les I.A.A.

    No full text
    National audienc

    Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis

    Get PDF
    The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report the discovery and the functional characterization of the first vacuolar auxin transporter. We demonstrate that WALLS ARE THIN1 (WAT1), a plant-specific protein that dictates secondary cell wall thickness of wood fibres, facilitates auxin export from isolated Arabidopsis vacuoles in yeast and in Xenopus oocytes. We unambiguously identify IAA and related metabolites in isolated Arabidopsis vacuoles, suggesting a key role for the vacuole in intracellular auxin homoeostasis. Moreover, local auxin application onto wat1 mutant stems restores fibre cell wall thickness. Our study provides new insight into the complexity of auxin transport in plants and a means to dissect auxin function during fibre differentiation
    corecore