1,948 research outputs found
Particle decay in the early universe: predictions for 21 cm
The influence of ultra-high energy cosmic rays (UHECRs) and decaying dark
matter particles on the emission and absorption characteristics of neutral
hydrogen in 21 cm at redshifts is considered. In presence of UHECRs
21 cm can be seen in absorption with the brightness temperature
mK in the range . Decayng particles can stimulate a 21 cm signal in
emission with mK at , and mK at . Characteristics of the fluctuations of the brightness temperature, in
particular, its power spectrum are also calculated. The maps of the power
spectrum of the brightness temperature on the plane {\it wavenumber-redshift}
are shown to be sensitive to the parameters of UHECRs and decaying dark matter.
Observational possibilities to detect manifestations of UHECRs and/or decaying
particles in 21 cm with the future radio telescopes (LOFAR, 21CMA and SKA), and
to distinguish contributions from them are briefly discussed.Comment: 10 pages, 9 figures, accepted in MNRA
Polarization of the \lya Halos Around Sources Before Cosmological Reionization
In Loeb & Rybicki (1999; paper I) it was shown that before reionization, the
scattering of \lya photons from a cosmological source might lead to a fairly
compact () \lya halo around the source. Observations of such halos
could constrain the properties of the neutral intergalactic medium (IGM), and
in particular yield the cosmological density parameters of baryons and matter
on scales where the Hubble flow is unperturbed. Paper I did not treat the
polarization of this scattered radiation, but did suggest that the degree of
such polarization might be large. In this Letter we report on improved
calculations for these \lya halos, now accounting for the polarization of the
radiation field. The polarization is linear and is oriented tangentially to the
projected displacement from the center of the source. The degree of
polarization is found to be 14% at the core radius, where the intensity has
fallen to half of the central value. It rises to 32% and 45% at the radii where
the intensity has fallen to one-tenth and one-hundreth of the central
intensity, respectively. At larger radii the degree of polarization rises
further, asymptotically to 60%. Such high values of polarization should be
easily observable and provide a clear signature of the phenomenon of \lya halos
surrounding sources prior to reionization.Comment: 8 pages, 2 Postscript figures, accepted by Astrophysical Journal
Letters; some typos corrected; added two paragraphs at the end of section 3
concerning detectability of Lyman alpha halo
Large scale distribution of total mass versus luminous matter from Baryon Acoustic Oscillations: First search in the SDSS-III BOSS Data Release 10
Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to
leave an as yet undetected signature on the relative clustering of total mass
versus luminous matter. A detection of this effect would provide an important
confirmation of the standard cosmological paradigm and constrain alternatives
to dark matter as well as non-standard fluctuations such as Compensated
Isocurvature Perturbations (CIPs). We conduct the first observational search
for this effect, by comparing the number-weighted and luminosity-weighted
correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample.
When including CIPs in our model, we formally obtain evidence at of
the relative clustering signature and a limit that matches the existing upper
limits on the amplitude of CIPs. However, various tests suggest that these
results are not yet robust, perhaps due to systematic biases in the data. The
method developed in this Letter, used with more accurate future data such as
that from DESI, is likely to confirm or disprove our preliminary evidence.Comment: 6 pages, 2 figures, accepted for publication in PR
Emission Spectra from Internal Shocks in Gamma-Ray-Burst Sources
Unsteady activity of gamma-ray burst sources leads to internal shocks in
their emergent relativistic wind. We study the emission spectra from such
shocks, assuming that they produce a power-law distribution of relativistic
electrons and posses strong magnetic fields. The synchrotron radiation emitted
by the accelerated electrons is Compton up-scattered multiple times by the same
electrons. A substantial component of the scattered photons acquires high
energies and produces e+e- pairs. The pairs transfer back their kinetic energy
to the radiation through Compton scattering. The generic spectral signature
from pair creation and multiple Compton scattering is highly sensitive to the
radius at which the shock dissipation takes place and to the Lorentz factor of
the wind. The entire emission spectrum extends over a wide range of photon
energies, from the optical regime up to TeV energies. For reasonable values of
the wind parameters, the calculated spectrum is found to be in good agreement
with the burst spectra observed by BATSE.Comment: 12 pages, latex, 2 figures, submitted to ApJ
Synthesis of a new polypyridinic highly conjugated ligand with electron-acceptor properties
A new acceptor polypyridinic ligand functionalized with a quinone fragment is reported. The ligand, dipyrido[3,2-a:2′,3′-c]-benzo[3,4]-phenazine-11,16-quinone, Nqphen, was synthesized by condensation of 1,10-phenanthroline-5,6-dione and 2,3-diamino-1,4-naphthoquinone. The syntheses of two rhenium complexes with this ligand are also reported
Redshift determination in the X-ray band of gamma-ray bursts
If gamma-ray bursts originate in dense stellar forming regions, the
interstellar material can imprint detectable absorption features on the
observed X-ray spectrum. Such features can be detected by existing and planned
X-ray satellites, as long as the X-ray afterglow is observed after a few
minutes from the burst. If the column density of the interstellar material
exceeds ~10^{23} cm^{-2} there exists the possibility to detect the K_alpha
fluorescent iron line, which should be visible for more than one year, long
after the X-ray afterglow continuum has faded away. Detection of these X-ray
features will make possible the determination of the redshift of gamma-ray
bursts even when their optical afterglow is severely dimmed by extinction.Comment: 15 pages with 5 figures. Submitted to Ap
Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers
Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end joining (NHEJ) pathway required for the repair of DNA double strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. Methods: We evaluated clinicopathological significance of DNA-PKcs protein expression in 1161 tumours and DNA-PKcs mRNA expression in 1950 tumours. We correlated DNA-PKcs to other markers of aggressive phenotypes, DNA repair, apoptosis and cell cycle regulation. Results: Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps<0.05). Absence of BRCA1, low XRCC1/SMUG1/APE1/Polβ were also more likely in low DNA-PKcs expressing tumours (ps<0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer specific survival (BCCS) in univariate and multivariate analysis (ps<0.01). At the mRNA level, low DNA-PKcs was associated with PAM50.Her2 and PAM50.LumA molecular phenotypes (ps<0.01) and poor BCSS. In patients with ER positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Conclusions: Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers
Relative blocking in posets
Poset-theoretic generalizations of set-theoretic committee constructions are
presented. The structure of the corresponding subposets is described. Sequences
of irreducible fractions associated to the principal order ideals of finite
bounded posets are considered and those related to the Boolean lattices are
explored; it is shown that such sequences inherit all the familiar properties
of the Farey sequences.Comment: 29 pages. Corrected version of original publication which is
available at http://www.springerlink.com, see Corrigendu
Cosmology with X-ray Cluster Baryons
X-ray cluster measurements interpreted with a universal baryon/gas mass
fraction can theoretically serve as a cosmological distance probe. We examine
issues of cosmological sensitivity for current (e.g. Chandra X-ray Observatory,
XMM-Newton) and next generation (e.g. Con-X, XEUS) observations, along with
systematic uncertainties and biases. To give competitive next generation
constraints on dark energy, we find that systematics will need to be controlled
to better than 1% and any evolution in f_gas (and other cluster gas properties)
must be calibrated so the residual uncertainty is weaker than (1+z)^{0.03}.Comment: 6 pages, 5 figures; v2: 13 pages, substantial elaboration and
reordering, matches JCAP versio
An Inverse Compton Scattering Origin of X-ray Flares from Sgr A*
The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a
quiescent component dominates the emission at radio and sub-mm wavelengths. The
spectral energy distribution of the quiescent emission from Sgr A* peaks at
sub-mm wavelengths and is modeled as synchrotron radiation from a thermal
population of electrons in the accretion flow, with electron temperatures
ranging up to \,MeV. Here we investigate the mechanism by which
X-ray flare emission is produced through the interaction of the quiescent and
flaring components of Sgr A*. The X-ray flare emission has been interpreted as
inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present
results of simultaneous X-ray and near-IR observations and show evidence that
X-ray peak flare emission lags behind near-IR flare emission with a time delay
ranging from a few to tens of minutes. Our Inverse Compton scattering modeling
places constraints on the electron density and temperature distributions of the
accretion flow and on the locations where flares are produced. In the context
of this model, the strong X-ray counterparts to near-IR flares arising from the
inner disk should show no significant time delay, whereas near-IR flares in the
outer disk should show a broadened and delayed X-ray flare.Comment: 22 pages, 6 figures, 2 tables, AJ (in press
- …
