Abstract

Poset-theoretic generalizations of set-theoretic committee constructions are presented. The structure of the corresponding subposets is described. Sequences of irreducible fractions associated to the principal order ideals of finite bounded posets are considered and those related to the Boolean lattices are explored; it is shown that such sequences inherit all the familiar properties of the Farey sequences.Comment: 29 pages. Corrected version of original publication which is available at http://www.springerlink.com, see Corrigendu

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020