2,237 research outputs found
Transition Radiation Spectroscopy with Prototypes of the ALICE TRD
We present measurements of the transition radiation (TR) spectrum produced in
an irregular radiator at different electron momenta. The data are compared to
simulations of TR from a regular radiator.Comment: 4 pages, 5 Figures, Proceedings for "TRDs for the 3rd millennium"
(Sept. 4-7, 2003, Bari, Italy
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
THE ROLE OF FLUID VELOCITY ON THE SHAPE OF DENDRITIC TIPS
This study is concerned the shape of dendritic tip grown from an undercooled melt in the presence of fluid velocity. The tip shape function is derived and tested against numerical simulations when a forced convection plays a decisive role.L.V.T. acknowledges the financial support from the Russian Science Foundation (project no. 21-79-10012)
Transition Radiation Spectra of Electrons from 1 to 10 GeV/c in Regular and Irregular Radiators
We present measurements of the spectral distribution of transition radiation
generated by electrons of momentum 1 to 10 GeV/c in different radiator types.
We investigate periodic foil radiators and irregular foam and fiber materials.
The transition radiation photons are detected by prototypes of the drift
chambers to be used in the Transition Radiation Detector (TRD) of the ALICE
experiment at CERN, which are filled with a Xe, CO2 (15 %) mixture. The
measurements are compared to simulations in order to enhance the quantitative
understanding of transition radiation production, in particular the momentum
dependence of the transition radiation yield.Comment: 18 pages, 15 figures, submitted to Nucl. Instr. Meth. Phys. Res.
Time Asymmetric Quantum Physics
Mathematical and phenomenological arguments in favor of asymmetric time
evolution of micro-physical states are presented.Comment: Tex file with 2 figure
MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement
A new concept for the direct measurement of muons in air showers is
presented. The concept is based on resistive plate chambers (RPCs), which can
directly measure muons with very good space and time resolution. The muon
detector is shielded by placing it under another detector able to absorb and
measure the electromagnetic component of the showers such as a water-Cherenkov
detector, commonly used in air shower arrays. The combination of the two
detectors in a single, compact detector unit provides a unique measurement that
opens rich possibilities in the study of air showers.Comment: 11 page
The HADES Tracking System
The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is
formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in
total about 30 square meter of active area. Low multiple scattering in the in
total four planes of drift chambers before and after the magnetic field is
ensured by using helium-based gas mixtures and aluminum cathode and field
wires. First in-beam performance results are contrasted with expectations from
simulations. Emphasis is placed on the energy loss information, exploring its
relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on
Instrumentation, Vienna, February 2004, to be published in NIM A (special
issue
A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions
The aim of this study was to develop a three-dimensional (3D) model of the human blood-brain barrier in vitro, which mimics the cellular architecture of the CNS and could be used to analyse the delivery of nanoparticles to cells of the CNS. The model includes human astrocytes set in a collagen gel, which is overlaid by a monolayer of human brain endothelium (hCMEC/D3 cell line). The model was characterised by transmission electron microscopy (TEM), immunofluorescence microscopy and flow cytometry. A collagenase digestion method could recover the two cell types separately at 92-96% purity. Astrocytes grown in the gel matrix do not divide and they have reduced expression of aquaporin-4 and the endothelin receptor, type B compared to two-dimensional cultures, but maintain their expression of glial fibrillary acidic protein. The effects of conditioned media from these astrocytes on the barrier phenotype of the endothelium was compared with media from astrocytes grown conventionally on a two-dimensional (2D) substratum. Both induce the expression of tight junction proteins zonula occludens-1 and claudin-5 in hCMEC/D3 cells, but there was no difference between the induced expression levels by the two media. The model has been used to assess the transport of glucose-coated 4nm gold nanoparticles and for leukocyte migration. TEM was used to trace and quantitate the movement of the nanoparticles across the endothelium and into the astrocytes. This blood-brain barrier model is very suitable for assessing delivery of nanoparticles and larger biomolecules to cells of the CNS, following transport across the endothelium
Geometry and material effects in Casimir physics - Scattering theory
We give a comprehensive presentation of methods for calculating the Casimir
force to arbitrary accuracy, for any number of objects, arbitrary shapes,
susceptibility functions, and separations. The technique is applicable to
objects immersed in media other than vacuum, to nonzero temperatures, and to
spatial arrangements in which one object is enclosed in another. Our method
combines each object's classical electromagnetic scattering amplitude with
universal translation matrices, which convert between the bases used to
calculate scattering for each object, but are otherwise independent of the
details of the individual objects. This approach, which combines methods of
statistical physics and scattering theory, is well suited to analyze many
diverse phenomena. We illustrate its power and versatility by a number of
examples, which show how the interplay of geometry and material properties
helps to understand and control Casimir forces. We also examine whether
electrodynamic Casimir forces can lead to stable levitation. Neglecting
permeabilities, we prove that any equilibrium position of objects subject to
such forces is unstable if the permittivities of all objects are higher or
lower than that of the enveloping medium; the former being the generic case for
ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics
volume in Casimir physic
The High-Acceptance Dielectron Spectrometer HADES
HADES is a versatile magnetic spectrometer aimed at studying dielectron
production in pion, proton and heavy-ion induced collisions. Its main features
include a ring imaging gas Cherenkov detector for electron-hadron
discrimination, a tracking system consisting of a set of 6 superconducting
coils producing a toroidal field and drift chambers and a multiplicity and
electron trigger array for additional electron-hadron discrimination and event
characterization. A two-stage trigger system enhances events containing
electrons. The physics program is focused on the investigation of hadron
properties in nuclei and in the hot and dense hadronic matter. The detector
system is characterized by an 85% azimuthal coverage over a polar angle
interval from 18 to 85 degree, a single electron efficiency of 50% and a vector
meson mass resolution of 2.5%. Identification of pions, kaons and protons is
achieved combining time-of-flight and energy loss measurements over a large
momentum range. This paper describes the main features and the performance of
the detector system
- …