18 research outputs found

    Atomic structure of grain boundaries in iron modeled using the atomic density function

    Full text link
    A model based on the continuous atomic density function (ADF) approach is applied to predict the atomic structure of grain boundaries (GBs) in iron. Symmetrical [100] and [110] tilt GBs in bcc iron are modeled with the ADF method and relaxed afterwards in molecular dynamics (MD) simulations. The shape of the GB energy curve obtained in the ADF model reproduces well the peculiarities of the angles of 70.53 deg. [Σ\Sigma 3(112)] and 129.52 deg. [Σ\Sigma 11(332)] for [110] tilt GBs. The results of MD relaxation with an embedded-atom method potential for iron confirm that the atomic GB configurations obtained in ADF modeling are very close to equilibrium ones. The developed model provides well-localized atomic positions for GBs of various geometries.Comment: 8 pages, 8 figures, revised versio

    Spin vortices and vacancies: interactions and pinning on a square lattice

    Full text link
    The study gives a decisive answer to the recently risen question about the type and origin of interaction between spin vortices and spin vacancies in 2D spin models. The approach is based on the low-temperature approximation of the 2D XY model known as the Villain model and does not involve any additional approximations, thus preserving the lattice structure. The exact form of the Hamiltonian describing a system of topological charges and a vacant site supports the attractive type of interaction between the vacancy and the charges. The quantitative difference between the characteristics of the vortex behavior in the 2D XY and Villain models due to the different energy of the vortex "cores" in the two models is pointed out. This leads to a conclusion that the interaction between a vortex and a spin vacancy and between a vortex and the antivortex differs quantitatively for small separations in the two mentioned models.Comment: 13 pages, 5 figure

    Perturbation expansion for the diluted two-dimensional XY model

    Full text link
    We study the quasi-long-range ordered phase of a 2D XY model with quenched site-dilution using the spin-wave approximation and expansion in the parameter which characterizes the deviation from completely homogeneous dilution. The results, obtained by keeping the terms up to the third order in the expansion, show good accordance with Monte Carlo data in a wide range of dilution concentrations far enough from the percolation threshold. We discuss different types of expansion.Comment: 8 pages, 1 eps figure, style file include

    The 2D XY model on a finite lattice with structural disorder: quasi-long-range ordering under realistic conditions

    Full text link
    We present an analytic approach to study concurrent influence of quenched non-magnetic site-dilution and finiteness of the lattice on the 2D XY model. Two significant deeply connected features of this spin model are: a special type of ordering (quasi-long-range order) below a certain temperature and a size-dependent mean value of magnetisation in the low-temperature phase that goes to zero (according to the Mermin-Wagner-Hohenberg theorem) in the thermodynamic limit. We focus our attention on the asymptotic behaviour of the spin-spin correlation function and the probability distribution of magnetisation. The analytic approach is based on the spin-wave approximation valid for the low-temperature regime and an expansion in the parameters which characterise the deviation from completely homogeneous configuration of impurities. We further support the analytic considerations by Monte Carlo simulations performed for different concentrations of impurities and compare analytic and MC results. We present as the main quantitative result of the work the exponent of the spin-spin correlation function power law decay. It is non universal depending not only on temperature as in the pure model but also on concentration of magnetic sites. This exponent characterises also the vanishing of magnetisation with increasing lattice size.Comment: 13 pages, 7 eps figures, style files include

    Interplay of topological and structural defects in the 2D XY model

    Full text link
    The present work is devoted to the investigation of the interaction between vortices (topological defects) and site-impurities (structural defects) in the 2D XY model and its influence on the well-known properties of the pure system. The main goal is a theoretical description of the Berezinskii-Kosterlitz-Thouless (BKT) temperature reduction by quenched non-magnetic impurities, based on the vacancy-vortex interactions and the vortex-pair dissociation mechanism of the transition. The non-magnetic impurity interaction with a system of vortices can be found either from the phenomenological theory of topological defects or from the Villain model. We take both paths and compare the results obtained. Our prediction for the BKT temperature reduction is confirmed by the available Monte Carlo data.Comment: 13 pages, 1 eps figure, style files include

    Quasi-long-range ordering in a finite-size 2D Heisenberg model

    Get PDF
    We analyse the low-temperature behaviour of the Heisenberg model on a two-dimensional lattice of finite size. Presence of a residual magnetisation in a finite-size system enables us to use the spin wave approximation, which is known to give reliable results for the XY model at low temperatures T. For the system considered, we find that the spin-spin correlation function decays as 1/r^eta(T) for large separations r bringing about presence of a quasi-long-range ordering. We give analytic estimates for the exponent eta(T) in different regimes and support our findings by Monte Carlo simulations of the model on lattices of different sizes at different temperatures.Comment: 9 pages, 3 postscript figs, style files include

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    First-Order Phase Transition with Breaking of Lattice Rotation Symmetry in Continuous-Spin Model on Triangular Lattice

    Full text link
    Using a Monte Carlo method, we study the finite-temperature phase transition in the two-dimensional classical Heisenberg model on a triangular lattice with or without easy-plane anisotropy. The model takes account of competing interactions: a ferromagnetic nearest-neighbor interaction J1J_1 and an antiferromagnetic third nearest-neighbor interaction J3J_3. As a result, the ground state is a spiral spin configuration for −4<J1/J3<0-4 < J_1/J_3 < 0. In this structure, global spin rotation cannot compensate for the effect of 120-degree lattice rotation, in contrast to the conventional 120-degree structure of the nearest-neighbor interaction model. We find that this model exhibits a first-order phase transition with breaking of the lattice rotation symmetry at a finite temperature. The transition is characterized as a Z2Z_2 vortex dissociation in the isotropic case, whereas it can be viewed as a ZZ vortex dissociation in the anisotropic case. Remarkably, the latter is continuously connected to the former as the magnitude of anisotropy decreases, in contrast to the recent work by Misawa and Motome [J. Phys. Soc. Jpn. \textbf{79} (2010) 073001.] in which both the transitions were found to be continuous.Comment: 11pages, 16figures, accepted to JPS
    corecore