4,592 research outputs found

    Color suppressed contributions to the decay modes B_{d,s} -> D_{s,d} D_{s,d}, B_{d,s} -> D_{s,d} D^*_{s,d}, and B_{d,s} -> D^*_{s,d} D^*_{s,d}

    Full text link
    The amplitudes for decays of the type Bd,sDs,dDs,dB_{d,s} \to D_{s,d} D_{s,d}, have no factorizable contributions, while Bd,sDs,dDs,dB_{d,s} \to D_{s,d} D^*_{s,d}, and Bd,sDs,dDs,dB_{d,s} \to D^*_{s,d} D^*_{s,d} have relatively small factorizable contributions through the annihilation mechanism. The dominant contributions to the decay amplitudes arise from chiral loop contributions and tree level amplitudes which can be obtained in terms of soft gluon emissions forming a gluon condensate. We predict that the branching ratios for the processes Bˉd0Ds+Ds\bar B^0_d \to D_s^+ D_s^-, Bˉd0Ds+Ds\bar B^0_d \to D_s^{+*} D_s^- and Bˉd0Ds+Ds\bar B^0_d \to D_s^+ D_s^{-*} are all of order (23)×104(2- 3) \times 10^{-4}, while Bˉs0Dd+Dd\bar B^0_s \to D_d^+ D_d^-, Bˉs0Dd+Dd\bar B^0_s \to D_d^{+*} D_d^- and Bˉs0Dd+Dd\bar B^0_s \to D_d^+ D_d^{-*} are of order (47)×103(4- 7) \times 10^{-3}. We obtain branching ratios for two DD^*'s in the final state of order two times bigger.Comment: 15 pages, 4 figure

    Module production of the one-arm AFP 3D pixel tracker

    Full text link
    The ATLAS Forward Proton (AFP) detector is designed to identify events in which one or two protons emerge intact from the LHC collisions. AFP will consist of a tracking detector, to measure the momentum of the protons, and a time of flight system to reduce the background from multiple proton-proton interactions. Following an extensive qualification period, 3D silicon pixel sensors were selected for the AFP tracker. The sensors were produced at CNM (Barcelona) during 2014. The tracker module assembly and quality control was performed at IFAE during 2015. The assembly of the first AFP arm and the following installation in the LHC tunnel took place in February 2016. This paper reviews the fabrication process of the AFP tracker focusing on the pixel modules.Comment: PIXEL 2016 proceedings; Submitted to JINS

    On Universality in Human Correspondence Activity

    Get PDF
    Identifying and modeling patterns of human activity has important ramifications in applications ranging from predicting disease spread to optimizing resource allocation. Because of its relevance and availability, written correspondence provides a powerful proxy for studying human activity. One school of thought is that human correspondence is driven by responses to received correspondence, a view that requires distinct response mechanism to explain e-mail and letter correspondence observations. Here, we demonstrate that, like e-mail correspondence, the letter correspondence patterns of 16 writers, performers, politicians, and scientists are well-described by the circadian cycle, task repetition and changing communication needs. We confirm the universality of these mechanisms by properly rescaling letter and e-mail correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl

    On a Covariant Determination of Mass Scales in Warped Backgrounds

    Get PDF
    We propose a method of determining masses in brane scenarios which is independent of coordinate transformations. We apply our method to the scenario of Randall and Sundrum (RS) with two branes, which provides a solution to the hierarchy problem. The core of our proposal is the use of covariant equations and expressing all coordinate quantities in terms of invariant distances. In the RS model we find that massive brane fields propagate proper distances inversely proportional to masses that are not exponentially suppressed. The hierarchy between the gravitational and weak interactions is nevertheless preserved on the visible brane due to suppression of gravitational interactions on that brane. The towers of Kaluza-Klein states for bulk fields are observed to have different spacings on different branes when all masses are measured in units of the fundamental scale. Ratios of masses on each brane are the same in our covariant and the standard interpretations. Since masses of brane fields are not exponentiated, the fundamental scale of higher-dimensional gravity must be of the order of the weak scale.Comment: 14 page

    Sliding Columnar Phase of DNA-Lipid Complexes

    Full text link
    We introduce a simple model for DNA-cationic-lipid complexes in which galleries between planar bilayer lipid lamellae contain DNA 2D smectic lattices that couple orientationally and positionally to lattices in neighboring galleries. We identify a new equilibrium phase in which there are long-range orientational but not positional correlations between DNA lattices. We discuss properties of this new phase such as its X-ray structure factor S(r), which exhibits unusual exp(- const.ln^2 r) behavior as a function of in-plane separation r.Comment: This file contains 4 pages of double column text and one postscript figure. This version includes interactions between dislocations in a given gallery and presents an improved estimate of the decoupling temperature. It is the published versio

    Nonlinear Elasticity of the Sliding Columnar Phase

    Full text link
    The sliding columnar phase is a new liquid-crystalline phase of matter composed of two-dimensional smectic lattices stacked one on top of the other. This phase is characterized by strong orientational but weak positional correlations between lattices in neighboring layers and a vanishing shear modulus for sliding lattices relative to each other. A simplified elasticity theory of the phase only allows intralayer fluctuations of the columns and has three important elastic constants: the compression, rotation, and bending moduli, BB, KyK_y, and KK. The rotationally invariant theory contains anharmonic terms that lead to long wavelength renormalizations of the elastic constants similar to the Grinstein-Pelcovits renormalization of the elastic constants in smectic liquid crystals. We calculate these renormalizations at the critical dimension d=3d=3 and find that Ky(q)K1/2(q)B1/3(q)(ln(1/q))1/4K_y(q) \sim K^{1/2}(q) \sim B^{-1/3}(q) \sim (\ln(1/q))^{1/4}, where qq is a wavenumber. The behavior of BB, KyK_y, and KK in a model that includes fluctuations perpendicular to the layers is identical to that of the simple model with rigid layers. We use dimensional regularization rather than a hard-cutoff renormalization scheme because ambiguities arise in the one-loop integrals with a finite cutoff.Comment: This file contains 18 pages of double column text in REVTEX format and 6 postscript figure

    Interface Motion in Random Media at Finite Temperature

    Get PDF
    We have studied numerically the dynamics of a driven elastic interface in a random medium, focusing on the thermal rounding of the depinning transition and on the behavior in the T=0T=0 pinned phase. Thermal effects are quantitatively more important than expected from simple dimensional estimates. For sufficient low temperature the creep velocity at a driving force equal to the T=0T=0 depinning force exhibits a power-law dependence on TT, in agreement with earlier theoretical and numerical predictions for CDW's. We have also examined the dynamics in the T=0T=0 pinned phase resulting from slowly increasing the driving force towards threshold. The distribution of avalanche sizes SS_\| decays as S1κS_\|^{-1-\kappa}, with κ=0.05±0.05\kappa = 0.05\pm 0.05, in agreement with recent theoretical predictions.Comment: harvmac.tex, 30 pages, including 9 figures, available upon request. SU-rm-94073

    Dynamical robustness of biological networks with hierarchical distribution of time scales

    Full text link
    We propose the concepts of distributed robustness and r-robustness, well adapted to functional genetics. Then we discuss the robustness of the relaxation time using a chemical reaction description of genetic and signalling networks. First, we obtain the following result for linear networks: for large multiscale systems with hierarchical distribution of time scales the variance of the inverse relaxation time (as well as the variance of the stationary rate) is much lower than the variance of the separate constants. Moreover, it can tend to 0 faster than 1/n, where n is the number of reactions. We argue that similar phenomena are valid in the nonlinear case as well. As a numerical illustration we use a model of signalling network that can be applied to important transcription factors such as NFkB

    Rare radiative B decays to orbitally excited K mesons

    Get PDF
    The exclusive rare radiative B meson decays to orbitally excited axial-vector mesons K_1^*(1270), K_1(1400) and to the tensor meson K_2^*(1430) are investigated in the framework of the relativistic quark model based on the quasipotential approach in quantum field theory. These decays are considered without employing the heavy quark expansion for the s quark. Instead the s quark is treated to be light and the expansion in inverse powers of the large recoil momentum of the final K^{**} meson is used to simplify calculations. It is found that the ratio of the branching fractions of rare radiative B decays to axial vector K^*_1(1270) and K_1(1400) mesons is significantly influenced by relativistic effects. The obtained results for B decays to the tensor meson K_2^*(1430) agree with recent experimental data from CLEO.Comment: 17 pages, revte

    Layer Features of the Lattice Gas Model for Self-Organized Criticality

    Full text link
    A layer-by-layer description of the asymmetric lattice gas model for 1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented. The power spectra of the lattice layers in the direction perpendicular to the particle flux is studied in order to understand how the white noise at the input boundary evolves, on the average, into 1/f-noise for the system. The effects of high boundary drive and uniform driving force on the power spectrum of the total number of diffusing particles are considered. In the case of nearest-neighbor particle interactions, high statistics simulation results show that the power spectra of single lattice layers are characterized by different βx\beta_x exponents such that βx1.9\beta_x \to 1.9 as one approaches the outer boundary.Comment: LaTeX, figures upon reques
    corecore