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Methods

Consider a cascading Poisson process with parametersθ = {ρ, ξ}. The inter-event time distribu-

tion is given by

p (τ |θ) =

{
ξ τ = 0
(1 − ξ)ρe−ρτ τ > 0

, (S1)

and the probability of observingNT⋆
events during a time interval of durationT⋆ can be written as

p (NT⋆
|θ) =

{
e−ρT⋆ NT⋆

= 0

e−ρT⋆Q(NT⋆
− 1; θ, T⋆) NT⋆

> 0
, (S2)

where the polynomial

Q(N ; θ, T⋆) = (1 − ξ)ρT⋆

N∑

n=0

(
N

n

)
ξn [(1 − ξ)ρT⋆]

N−n

(n + 1)!
(S3)

accounts for the various ways that theN = NT⋆
− 1 events during the time interval of durationT⋆

time units can be grouped into cascades of activity. The censored likelihood function is given by

L(θ) =

T/T⋆−1∏

k=0

Pr(NT⋆,k|θ) , (S4)

whereT is the duration of the time segment,T⋆ = 1 day, andNT⋆,k is the number of events that

occur on dayk. The derivation for these quantities can be found in Sec. S4.
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S1 Preprocessing the data

The empirical data consists of letters sent or received by 16writers, performers, politicians, and

scientists (S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13). In our study, we focused on the letters

that these individuals sent. There are a number of issues with the data that mandate preprocessing.

For example, according to the records, almost of19% of Ernest Hemingway’s letters have either

unspecified or ambiguous authorship dates (e.g., “Aug 1945”, “ 1946/47”, “ Early 1950”,

“1960?” or “Fall 1960”) (S12). We remove all letters in the data for which the precise dateis

unknown.

Additionally, the letter correspondence records are aggregated from a variety of sources. Some

of the letters are carbon copies that were saved by the original author. Other letters are collected

from the original recipients of the letters and returned to the database. Having a complete letter

correspondence record for a particular individual, therefore, either relies on (i) an individual to

retain a copy of each letter, (ii) all recipients of an individual’s letters to retain a copy of their

letters, or (iii) same fortuitous combination of (i) and (ii). We have confirmed that our results are

robust with regard to these anomalies in the data collectionmethod (Sec. S2).

In the case of Albert Einstein, there is one more challenge: several letters appear to be du-

plicates arising from the fact that the data is collected from different sources. To illustrate the

difficulty in identifying duplicate entries, consider the two letters sent on September 25, 1907 to

Joseph Stark and Johannes Stark, both in Griefswald, Germany. According to the database, the

letter to Joseph Stark is a typed transcript of a letter (denoted TTRL in the database) and the letter

to Johannes Stark is a xerox copy of a handwritten and signed letter (ALSX). While it is conceiv-

able that Einstein sent a letter to Joseph Stark and another letter to Nobel Laureate Johannes Stark,

we think it is more likely that the letter addressed to JosephStark is actually a draft of the same

letter addressed to Johannes Stark, of which the database has a xerox copy. As this example illus-

trates, we can not simply use the designation ALSX or TTRL to detect duplicate letters, we must

also use their names. To overcome this difficulty we use a dynamic programming text matching

algorithm (S14) to semi-automatically detect if letters are duplicates; that is, exceptionally differ-
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ent recipients are automatically detected and we manually curate recipients who have marginally

similar names. This procedure excludes another 651 letterswritten by Einstein.

In summary, we exclude from our analysis letters with uncertain dates and duplicate letters.

The results of our preprocessing procedure are summarized in Tbl. S1.

3



S2 Robustness of results with regard to data collection method

In e-mail correspondence, it is relatively trivial to collect correspondence activity; e-mail corre-

spondence can easily be extracted from the log files of an e-mail server. Collecting letter corre-

spondence data is not so simple. Unlike e-mail servers, the postal service does not archive all

written communications, so it is not possible to simply query the postal service for all correspon-

dence written by a particular individual. Instead, collecting correspondence records relies on the

letter authors or recipients to save letters and then returnthem to a centralized database. We exam-

ine two possible scenarios in which the limitations of this data collection method could potentially

distort our results.

In the first scenario, only a fraction of the total volume of letters originally sent by an individual

are actually saved and compiled in a centralized database. This will almost certainly be an issue

for almost every individual, since it is highly unlikely that every letter is saved by either the author

or the recipient. To test whether such an artifact of the datacollection method might affect our

conclusions about the validity of the cascading Poisson process, we randomly select a fraction of

the letters that Schoenberg sent. Although the resulting parameter estimates predictably decrease

as fewer and fewer letters are retained during our analysis (Fig. S1), our Monte Carlo hypothesis

testing results confirm that this artifact of data collection does not affect our conclusion that a

cascading Poisson process is consistent with the empiricaldata (Tbl. S2). Importantly, although

we have simulated the loss rate to be uniform over Schoenberg’s lifetime, a non-uniform loss rate

will not affect our results provided that the loss rate during each time segment is approximately the

same.

In the second scenario, only certain individuals might saveletters and return them to the cen-

tralized database. In the most extreme case, only one individual, perhaps a close friend or family

member, might save their correspondence. To test whether such an artifact of the data collection

method might affect our conclusions about the validity of the cascading Poisson process, we con-

sider Charles Darwin’s correspondence to his close friend,the well-known botanist J.D. Hooker.

Darwin sent Hooker 797 letters between 1844 and 1882. After segmenting this time series to

4



account for non-stationarities in the communication from Darwin to Hooker, we obtain 31 time

segments. Monte Carlo hypothesis testing rejects 1 of the 31time segments, which is within the

95% confidence interval[0, 4] of the corresponding binomial model, indicating that a cascading

Poisson process is still consistent with the data in spite ofthe bias in the sampling of Darwin’s cor-

respondence. Obviously, the resulting parameter estimates for Darwin’s correspondence to Hooker

are significantly different than the parameter estimates from the correspondence to all recipients

(Fig. S2). In particular, we note that cascades of activity cease to be important since it is highly

unlikely that someone would send more than one letter to an individual in the same day.

These results demonstrate that these artifacts of letter correspondence data collection do not ob-

fuscate our primary claim that a cascading Poisson process is consistent with the letter correspon-

dence patterns of the individuals under consideration, regardless of whether the correspondence

records are sampled uniformly at random or whether the correspondence records are sampled non-

uniformly.
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S3 Other candidate models

We have conducted the same Monte Carlo hypothesis testing procedure for three other candidate

models, the results of which are summarized in Tbl. S3 and Fig. S3. In the limit that cascades

of activity and weekly periodicities are irrelevant, a homogeneous Poisson process may be a rea-

sonable candidate model for letter correspondence. This model has a single parameter—the rate

of sending lettersρi—that is readily estimated using maximum likelihood (Sec. S4) during each

stationary time segment.This model is rejected for 7 individuals.

In the limit that cascades of activity are irrelevant but weekly cycles of activity are important, a

non-homogeneous Poisson process may be a reasonable candidate model for letter correspondence.

Here, we assume that the non-homogeneous Poisson process isperiodic on the weekly scale, so

this model has seven parameters—the rate of sending lettersρi,t during each day of the weekt—

that are readily estimated using maximum likelihood for each stationary time segment.This model

is rejected for 6 individuals.

If, as in the case of e-mail correspondence, cascades of activity and weekly cycles are im-

portant, a cascading non-homogeneous Poisson process may be a reasonable candidate model for

letter correspondence. Here, we assume that the cascading non-homogeneous Poisson process is

periodic on the weekly scale, so this model has eight parameters—the rate of sending letterρi,t

during each day of the weekt as well as the probabilityξi of sending additional letters during cas-

cades of activity—that are readily estimated using maximumlikelihood for each stationary time

segment. Like the cascading Poisson process presented in the manuscript,this model can not be

rejected for any individual, however the increased complexity of the cascading non-homogeneous

Poisson process is unwarranted since the simpler, two-parameter model is equally descriptive of

letter correspondence.

These results illustrate a few interesting features of models that are necessary for describing

letter correspondence patterns. First, based on the success of the models that include cascading

versus those that do not, we infer that cascades of activity are an essential element for describing

letter correspondence. Importantly, cascades of activityare also essential for describing e-mail
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correspondence patterns (S15). Second, since the models that include weekly periodicities have no

greater explanatory power than the models that do not include weekly periodicities, we conclude

that weekly patterns of activity are not an essential element for describing letter correspondence.

This suggests that letter correspondence does not appear tohave the same dependence on the

weekly work cycle as e-mail correspondence.
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S4 Analytical results

Before we derive the likelihood function for a cascading Poisson process where the data are cen-

sored, it is illustrative to first pedagogically demonstrate how to derive the likelihood function for

a homogeneous Poisson process in the absence and presence ofcensoring and then for a cascading

Poisson process in the absence and presence of censoring. Inour derivations of the parameter

estimatesθ for these models, we consider a time series{t1, t2, . . . , tN} of N ordered events occur-

ring within time segment[0, T ). For clarity, we omit the indexi which was used throughout the

manuscript to denote the parametersθi during time segmenti.

Homogeneous Poisson process. A homogeneous Poisson process with parametersθ = {ρ}

predicts that, during an infinitesimal time window of duration dt, an event either occurs (denoted

by •) at time t with probability Pr•(t) = ρdt or does not occur (denoted by◦) at time t with

probabilityPr◦(t) = (1− ρdt). Note that for a homogeneous Poisson process the outcome at time

t is independent of the outcome at timet − dt. Given an observed sequence ofN ordered events

0 ≤ t1 ≤ t2 ≤ · · · ≤ tN < T during time segment[0, T ), the probability that this sequence was

generated from a homogeneous Poisson process is given by

Pr(t1, t2, . . . , tN |θ) =




t1/dt−1∏

k=0/dt

Pr◦(kdt)



 Pr•(t1)




t2/dt−1∏

k=t1/dt+1

Pr◦(kdt)



 Pr•(t2) · · ·

Pr•(tN )




T/dt−1∏

k=tN /dt+1

Pr◦(kdt)





= (1 − ρdt)(t1−0)/dtρdt(1 − ρdt)(t2−t1)/dt−1ρdt · · ·

ρdt(1 − ρdt)(T−tN )/dt−1.

Note that

lim
dt→0

(1 − ρdt)∆t/dt−1 = lim
dt→0

(1 − ρdt)∆t/dt

(1 − ρdt)

=
e−ρdt(∆t/dt)

1

= e−ρ∆t.
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Using this result, we obtain the likelihood function for a homogeneous Poisson process in the limit

thatdt → 0

L(θ) = Pr(t1, t2, . . . , tN |θ)

= e−ρ(t1−0)ρdte−ρ(t2−t1)ρdt · · · ρdte−ρ(T−tN ),

= (ρdt)Ne−ρT . (S5)

By taking the derivative oflogL(θ) with respect to the rateρ, it is straightforward to see that the

likelihood function is optimized with the best-estimate rate ρ̂ = N/T for a homogeneous Poisson

process.

When the data are interval censored, as is the case of letter correspondence, our approach to

estimating the parameters changes to reflect our uncertainty in the precise timing of events. For

instance, suppose that our data have a resolution ofT⋆ = 1 day and that, on a particular day, we

observe thatNT⋆
events occurred. Assuming that our data are generated by a homogeneous Poisson

process, the probability thatNT⋆
events occurred during a time interval of durationT⋆ = 1 day is

given by marginalizing the likelihoodPr
(
t1, t2, . . . , tNT⋆

|θ
)

over all possible configurations of an

ordered set of events0 ≤ t1 ≤ t2 ≤ · · · ≤ tNT⋆
< T⋆ occurring during this interval:

Pr(NT⋆
|θ) =

T⋆∫

0

T⋆∫

t1

· · ·

T⋆∫

tNT⋆
−1

ρNT⋆ e−ρT⋆dtNT⋆
· · · dt2dt1

= ρNT⋆ e−ρT⋆

T⋆∫

0

T⋆∫

t1

· · ·

T⋆∫

tNT⋆
−1

dtNT⋆
· · · dt2dt1

=
(ρT⋆)

NT⋆ e−ρT⋆

NT⋆
!

, (S6)

resulting in the well-known Poisson distribution. Then, toestimate the parameters of a homoge-

neous Poisson process over the entire time segment[0, T ), we can account for the interval censor-

ing during parameter estimation by writing down the probability of observingNT⋆,k events on each

dayk as

L(θ) =

T/T⋆−1∏

k=0

Pr(NT⋆,k|θ) (S7)
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whereT/T⋆ is the number of days during time segment[0, T ). By taking the derivative oflogL(θ)

with respect to the rateρ, we again find that the best-estimate rateρ̂ = N/T . Although this result

is exactly the same for a homogeneous Poisson process regardless of whether the data is interval

censored or not, the important distinction is that maximum likelihood parameter estimation in the

interval censored case explicitly depends onPr(NT⋆
|θ). This fact is important to consider when

deriving the censored likelihood function for the cascading Poisson process.

Cascading Poisson process. Recall that in our cascading Poisson process, cascades of events

are initiated by a homogeneous Poisson process with rateρ and that each additional event in the

cascade occurs with probabilityξ ≫ ρdt. A cascading Poisson process with parametersθ = {ρ, ξ}

therefore predicts that, during an infinitesimal time window of durationdt, an event either occurs

(denoted by•) or does not occur (denoted by◦) depending on whether an event occurred at time

t − dt: if an event did not occur at timet − dt, then an event occurs at timet with probability

Pr◦•(t) = ρdt or does not occur with probabilityPr◦◦(t) = (1 − ρdt); if an event did occur at

time t − dt, then an event occurs at timet with probabilityPr◦•(t) = ξ or does not occur with

probabilityPr◦◦(t) = (1 − ξ). Then, given a sequence ofN ordered events, the probability that

this sequence was generated from a cascading Poisson process during the time segment[0, T ) is
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given by

Pr(t1, t2, . . . , tN |θ) =

[
t1/dt−1∏

k=0/dt

Pr◦◦(kdt)

]
Pr◦•(t1)

{
δt1+dt,t2Pr••(t2)+

(1 − δt1+dt,t2) Pr•◦(t1 + dt)

[
t2/dt−1∏

k=t1/dt+2

Pr◦◦(kdt)

]
Pr◦•(t2)

}
· · ·

{

δtN−1+dt,tN Pr••(tN) +

(
1 − δtN−1+dt,tN

)
Pr•◦(tN−1 + dt)

[
tN /dt−1∏

k=tN−1/dt+2

Pr◦◦(kdt)

]
Pr◦•(tN)

}

Pr•◦(tN + dt)

[
T/dt−1∏

k=tN /dt+2

Pr◦◦(kdt)

]

Pr(t1, t2, . . . , tN |θ) =

[

(1 − ρdt)(t1−0)/dt

]

ρdt

{

δt1+dt,t2ξ+

(1 − δt1+dt,t2) (1 − ξ)

[

(1 − ρdt)(t2−t1)/dt−2

]

ρdt

}

· · ·

{

δtN−1+dt,tN ξ+

(
1 − δtN−1+dt,tN

)
(1 − ξ)

[
(1 − ρdt)(tN−tN−1)/dt−2

]
ρdt

}

(1 − ξ)

[
(1 − ρdt)(T−tN )/dt−2

]
,
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whereδtn+dt,tn+1
is Kronecker’s delta. In the limit thatdt → 0, this simplifies to the likelihood

function

L(θ) = e−ρT ρdt

{
N−1∏

n=1

[
δtn+dt,tn+1

ξ + (1 − δtn+dt,tn+1
)(1 − ξ)ρdt

]
}

(1 − ξ) (S8)

= e−ρT ξM [(1 − ξ)ρdt]N−M , (S9)

whereM is the number of times thattn+1 − tn = dt. By taking the derivative oflogL(θ) with

respect to each of the parameters and setting the results equal to zero, it is straightforward to see

that the uncensored likelihood function for a cascading Poisson process is optimized when the

best-estimate parameters are specified byξ̂ = M/N andρ̂ = (N − M)/T .

As in the case of the homogeneous Poisson process, when the data are interval censored we

must instead estimate the parameters from the censored likelihood, Eq. (S7), which depends on the

probabilityPr(NT⋆
|θ) of observingNT⋆

events during a time window ofT⋆ = 1 day. Assuming

that our data are generated by a cascading Poisson process,Pr(NT⋆
|θ) is obtained by marginalizing

Pr
(
t1, t2, . . . , tNT⋆

|θ
)

over all possible configurations of an ordered set of events occurring during

this interval. If there are no events (NT⋆
= 0), then in the limit thatdt → 0 we are trivially left

with

Pr(NT⋆
= 0|θ) =

T⋆/dt−1∏

k=0/dt

Pr◦◦(kdt)

= (1 − ρdt)T⋆/dt

= e−ρT⋆ , (S10)

and if there are some events (NT⋆
> 0), we have from Eq. (S8)

Pr(NT⋆
|θ) =

T⋆∫

0

T⋆∫

t1

· · ·

T⋆∫

tNT⋆
−1

e−ρT⋆ρdt1

{
NT⋆

−1∏

n=1

[
δtn+dt,tn+1

ξ + (1 − δtn+dt,tn+1
)(1 − ξ)ρdtn+1

]
}

(1 − ξ)

= e−ρT⋆

T⋆∫

0

T⋆∫

t1

· · ·

T⋆∫

tNT⋆
−2

(1 − ξ)ρdt1

{
NT⋆

−2∏

n=1

[
δtn+dt,tn+1

ξ + (1 − δtn+dt,tn+1
)(1 − ξ)ρdtn+1

]
}

T⋆∫

tNT⋆
−1

[
δtNT⋆

−1+dt,tNT⋆

ξ + (1 − δtNT⋆
−1+dt,tNT⋆

)(1 − ξ)ρdtNT⋆

]
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Pr(NT⋆
|θ) = e−ρT⋆

T⋆∫

0

T⋆∫

t1

· · ·

T⋆∫

tNT⋆
−2

(1 − ξ)ρdt1

{
NT⋆

−2∏

n=1

[
δtn+dt,tn+1

ξ + (1 − δtn+dt,tn+1
)(1 − ξ)ρdtn+1

]
}



ξ +

T⋆∫

tNT⋆
−1

(1 − ξ)ρdtNT⋆





= e−ρT⋆

T⋆∫

0

T⋆∫

t1

· · ·

T⋆∫

tN
T⋆

−2

(1 − ξ)ρdt1

{
NT⋆

−2∏

n=1

[
δtn+dt,tn+1

ξ + (1 − δtn+dt,tn+1
)(1 − ξ)ρdtn+1

]
}

[
ξ + (1 − ξ)ρ(T⋆ − tNT⋆

−1)
]

...

= e−ρT⋆(1 − ξ)ρT⋆

NT⋆
−1∑

n=0

(
NT⋆

− 1

n

)
ξn [(1 − ξ)ρT⋆]

NT⋆
−1−n

(n + 1)!
. (S11)

Taking Eqs. (S10–S11) together, we see that

Pr(NT⋆
|θ) =

{
e−ρT⋆ NT⋆

= 0

e−ρT⋆Q(NT⋆
− 1; θ, T⋆) NT⋆

> 0
(S12)

where the polynomial

Q(N ; θ, T⋆) = (1 − ξ)ρT⋆

N∑

n=0

(
N

n

)
ξn [(1 − ξ)ρT⋆]

N−n

(n + 1)!
(S13)

accounts for the various ways that theN = NT⋆
− 1 events during the time segment of duration

T⋆ time units can be grouped into cascades of activity. Estimating the parameters of the cascad-

ing Poisson process from the censored likelihood function is analytically intractable. Instead, we

estimate the parameters of the cascading Poisson process bynumerically maximizing the corre-

sponding censored likelihood function, Eq. (S7), for the cascading Poisson process.
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S5 Monte Carlo hypothesis testing

Given a modelM with parametersθi, we use Monte Carlo hypothesis testing to determine whether

the model can be rejected during each time segment[Ti, Ti+1) of duration∆Ti = Ti+1 − Ti (S16,

S15). The Monte Carlo hypothesis testing procedure is as follows. First, we calculate the best-

estimate parameterŝθi for modelM using maximum likelihood estimation. Second, we compute

the test statisticS (detailed below) between the modelM(θ̂i) and the empirical dataDi during

that time segment[Ti, Ti+1). We next generate a synthetic data setDs from modelM(θ̂i) over the

same time segment[Ti, Ti+1) using the best-estimate parametersθ̂i, and we treat the synthetic data

exactly the same as we treated the empirical data: first, we calculate the best-estimate parameters

θ̂s for modelM from maximum likelihood estimation; second, we compute thetest statisticSs

between the modelM(θ̂s) and the synthetic dataDs. We generate synthetic data setsDs and their

corresponding synthetic test statisticsSs until we accumulate an ensemble of 10,000 Monte Carlo

test statistics{Ss}. Finally, we calculate a two-tailedp-value with a precision of10−4 by com-

putingPr(|Ss − 〈Ss〉| > |S − 〈Ss〉|) where〈Ss〉 is a suitably chosen centroid of the distribution of

synthetic test-statistics. As is customary in hypothesis testing, we reject the modelM during time

segment[Ti, Ti+1) if the p-value is less than a threshold value. We select ap-value threshold of

0.05; that is, if less than 5% of the synthetic data sets exhibit deviations in the test statistic that are

larger than those observed empirically, the model is rejected for that time segment[Ti, Ti+1).

Testing a model over a particular time segment[Ti, Ti+1) introduces two challenges to hypoth-

esis testing. First, an important consideration in Monte Carlo hypothesis testing is that we must

use a distribution for which both the empirical and synthetic data sets have the same number of

observations. Since our synthetic data is generated duringa specified time segment[Ti, Ti+1), we

can not use the inter-event time distribution because each synthetic time series is not guaranteed

to have the same number of events as the empirical time series. Instead, we assess the consistency

of our model with the empirical data by comparing the distribution Pr(NT⋆
|θ) of the number of

eventsNT⋆
during a time period of a specified durationT⋆. We choose a duration ofT⋆ = 1 week

as this seems to be a reasonable time scale for human activity(S15), so both the synthetic and
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empirical distributionsPr(NT⋆
|θ) have∆Ti/T⋆ observations. We have confirmed that our results

are insensitive to the specific choice ofT⋆ provided thatT⋆ ≪ ∆Ti.

Second, since we use the distributionPr(NT⋆
|θ) of the number of eventsNT⋆

during a time

period of a durationT⋆ = 1 week—a discrete distribution—it is important to use a test statistic

S that is appropriate for testing discrete distributions. Weuse theχ2 test statistic. An important

consideration in using theχ2 test statistic is that one must bin the observations and expected ob-

servations according to modelM(θ̂i) in a meaningful way. We binPr(NT⋆
|θ) such that each bin

has at least one expected observation according to modelM(θ̂i), which prevents observations that

are exceptionally rare from dominating our statistical test and skewing our results.
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Fig. S1: Cascading Poisson process best-estimate parameters θ = {ρi, ξi} during each time seg-
ment for Arnold Schoenberg when only a fraction of the original letters are returned to the central-
ized database. We include here the parameter estimates for the when 100%, 60%, and 20% of all
letters are returned to the centralized database.
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Fig. S2: Cascading Poisson process best-estimate parameters θ = {ρi, ξi} during each time seg-
ment for Charles Darwin when we consider all of his correspondence (black line) or only his
correspondence to J.D. Hooker (red line).
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eration: a homogeneous Poisson process (PP), a non-homogeneous Poisson process (NHPP), a
cascading Poisson process (CPP), and a cascading non-homogeneous Poisson process (CNHPP).
We reject a model during a particular time segment[Ti, Ti+1) if the p-value is less than 0.05 (grey
shaded region). Note that if the data were drawn from one of these models, we would expect a
uniform distribution ofp-values (dashed red line). Since this is very nearly the casefor the cascad-
ing Poisson process and the cascading non-homogeneous Poisson process, this provides additional
evidence that these models are consistent with letter correspondence patterns.
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Fig. S4: Parameter estimates for a cascading Poisson process for all 16 writers, performers,
politicians, and scientists under consideration. We estimate the parametersθi = {ρi, ξi} during
each time segment[Ti, Ti+1) for a cascading Poisson process by maximum likelihood. Greyshaded
regions denote time segments during which a cascading Poisson process is rejected by Monte Carlo
hypothesis testing.
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Fig. S5: Comparison of the inter-event time distribution for all 16 individuals (circles) and the
predictions of a non-stationary cascading Poisson process(red line). The predictions of the non-
stationary cascading Poisson process are estimated numerically.
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Number of sent letters

Before After Number of Letters per
Individual (Reference) processing processing recipients year

Francis Bacon (S1) 673 443 174 8.36
James H. Leigh Hunt (S2) 604 408 219 5.83
Charles Darwin (S3) 7, 595 6, 785 661 111
Anna Brownell Jameson (S4) 302 119 58 4.25
Friedrich Engels (S5) 413 369 70 5.86
Robert E. Lee (S6) 285 282 213 7.83
Karl Marx (S5) 491 469 72 10.2
Henry Irving (S7) 1, 621 1, 205 15 22.3
Sigmund Freud (S8) 3, 162 3, 130 168 46.0
Marcel Proust (S9) 670 668 135 15.2
H. G. Wells (S9) 1, 088 422 1, 041 8.12
Albert Einstein (S10) 14, 512 10, 319 5, 207 172
Carl Sandburg (S11) 2, 971 1, 894 2, 771 27.4
Arnold Schoenberg (S9) 7, 925 6, 899 1, 848 138
Ernest Hemingway (S12) 2, 363 1, 934 532 36.5
Stan Laurel (S13) 693 685 157 16.7

Tbl. S1: Summary of the letter correspondence records for the 16 individuals under consideration.
For each individual, we note the total number of sent lettersbefore and after processing, the number
of recipients and the average number of letters per year.
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Fraction Number of Number of
of letters segments 95% CI rejections

1.0 47 [0, 5] 3
0.9 47 [0, 5] 3
0.8 47 [0, 5] 3
0.7 45 [0, 5] 1
0.6 45 [0, 5] 2
0.5 44 [0, 5] 5
0.4 44 [0, 5] 1
0.3 42 [0, 5] 0
0.2 40 [0, 4] 1
0.1 32 [0, 4] 1

Tbl. S2: Summary of the hypothesis testing results for Arnold Schoenberg when only a fraction
of the in the centralized data base are considered. As the fraction of letters considered decreases,
more time segments must be merged such that at least 10 eventsoccur within each time segment.
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Number of Number of rejections

Individual segments 95% CI PP NHPP CPP CNHPP

Francis Bacon 19 [0, 3] 4 4 3 3
James H. Leigh Hunt 25 [0, 3] 2 3 1 1
Charles Darwin 52 [0, 5] 7 7 4 4
Anna Brownell Jameson 8 [0, 2] 1 1 1 1
Friedrich Engels 24 [0, 3] 1 2 1 2
Robert E. Lee 10 [0, 2] 1 1 0 1
Karl Marx 25 [0, 3] 1 1 1 0
Henry Irving 35 [0, 4] 1 1 0 1
Sigmund Freud 49 [0, 5] 2 2 2 3
Marcel Proust 25 [0, 3] 2 2 2 1
H. G. Wells 16 [0, 2] 3 1 0 0
Albert Einstein 54 [0, 6] 21 22 2 4
Carl Sandburg 37 [0, 4] 15 15 2 2
Arnold Schoenberg 47 [0, 5] 23 23 3 3
Ernest Hemingway 42 [0, 5] 7 7 5 4
Stan Laurel 17 [0, 3] 2 2 1 1

Tbl. S3: Summary of the letter correspondence records and hypothesis testing results for the
16 individuals. For each individual, we note the number of time segments[Ti, Ti+1) with at least
10 letters per time segment, the 95% confidence interval (CI)bounds on a binomial model with
p = 0.05, and the number of rejections based on our Monte Carlo hypothesis testing procedure
for each of the models we test: a homogeneous Poisson process(PP), a non-homogeneous Poisson
process (NHPP), a cascading Poisson process (CPP), and a cascading non-homogeneous Poisson
process (CNHPP). The number of rejections is highlighted inbold if the model is not consistent
with the data.
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