364 research outputs found

    Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgi-derived pleomorphic membrane structures in plant cells

    Get PDF
    Tomato spotted wilt virus (TSWV) particles are spherical and enveloped, an uncommon feature among plant infecting viruses. Previous studies have shown that virus particle formation involves the enwrapment of ribonucleoproteins with viral glycoprotein containing Golgi stacks. In this study, the localization and behaviour of the viral glycoproteins Gn and Gc were analysed, upon transient expression in plant protoplasts. When separately expressed, Gc was solely observed in the endoplasmic reticulum (ER), whereas Gn was found both within the ER and Golgi membranes. Upon co-expression, both glycoproteins were found at ER-export sites and ultimately at the Golgi complex, confirming the ability of Gn to rescue Gc from the ER, possibly due to heterodimerization. Interestingly, both Gc and Gn were shown to induce the deformation of ER and Golgi membranes, respectively, also observed upon co-expression of the two glycoproteins. The behaviour of both glycoproteins within the plant cell and the phenomenon of membrane deformation are discussed in light of the natural process of viral infectio

    Predominant Golgi-residency of the plant K/HDEL receptor is essential for its function in mediating ER retention

    Get PDF
    Accumulation of soluble proteins in the endoplasmic reticulum (ER) of plants is mediated by a receptor termed ER RETENTION DEFECTIVE 2 (ERD2) or K/HDEL receptor. Using two gain-of-function assays and by complementing loss of function in Nicotiana benthamiana we discovered that compromising the lumenal N-terminus or the cytosolic C-terminus with fluorescent fusions abolishes its biological function and profoundly affects its subcellular localization. Based on the confirmed asymmetrical topology of ERD2 we engineered a new fluorescent ERD2 fusion protein that retains biological activity. Using this fusion, we show that ERD2 is exclusively detected at the Golgi apparatus, unlike non-functional C-terminal fusions which also label the ER. Moreover, ERD2 is confined to early Golgi compartments and does not show ligand-induced redistribution to the ER. We show that the cytosolic C-terminus of ERD2 plays a crucial role in its function. Two conserved Leucine residues that do not correspond to any known targeting motifs for ER-Golgi trafficking were shown to be essential for both ERD2 Golgi residency and its ability to mediate ER retention of soluble ligands. The results suggest that anterograde ER to Golgi transport of ERD2 is either extremely fast, well in excess of the bulk flow rate, or that ERD2 does not recycle in the way originally proposed

    Analysis of Familial Hemophagocytic Lymphohistiocytosis type 4 (FHL-4) mutant proteins reveals that S-acylation is required for the function of syntaxin 11 in natural killer cells

    Get PDF
    Natural killer (NK) cell secretory lysosome exocytosis and cytotoxicity are impaired in familial hemophagocytic lymphohistiocytosis type 4 (FHL-4), a disorder caused by mutations in the gene encoding the SNARE protein syntaxin 11. We show that syntaxin 11 binds to SNAP23 in NK cells and that this interaction is reduced by FHL-4 truncation and frameshift mutation proteins that delete all or part of the SNARE domain of syntaxin 11. In contrast the FHL-4 mutant proteins bound to the Sec-1/Munc18-like (SM) protein Munc18-2. We demonstrate that the C-terminal cysteine rich region of syntaxin 11, which is deleted in the FHL-4 mutants, is S-acylated. This posttranslational modification is required for the membrane association of syntaxin 11 and for its polarization to the immunological synapse in NK cells conjugated to target cells. Moreover, we show that Munc18-2 is recruited by syntaxin 11 to intracellular membranes in resting NK cells and to the immunological synapse in activated NK cells. This recruitment of Munc18-2 is abolished by deletion of the C-terminal cysteine rich region of syntaxin 11. These results suggest a pivotal role for S-acylation in the function of syntaxin 11 in NK cells

    Cytogenetic analysis of five Hypostomus species (Siluriformes, Loricariidae)

    Get PDF
    In this work, we analyzed the karyotypes of five Hypostomus species. Hypostomus cf. heraldoi, from the Mogi-Guaçu River, had 2n = 72 chromosomes, with a nucleolar organizer region (NOR) in one chromosomal pair. Hypostomus regani, from the Mogi-Guaçu River had 2n = 72 chromosomes with NORs in two chromosomal pairs. Hypostomus sp., from the Mogi-Guaçu River basin, had 2n = 68 chromosomes, with NORs in two chromosomal pairs. Hypostomus aff. agna, from Cavalo Stream, had 2n = 74 chromosomes with NORs in two chromosomal pairs. Hypostomus cf. topavae, from Carrapato Stream, had 2n = 80 chromosomes, with NORs in two chromosomal pairs. Hypostomus species showed marked diversity in the karyotypic formula, which suggested the occurrence of several Robertsonian rearrangements and pericentric inversions during the evolutionary history of this genus. This hypothesis was supported by the occurrence of a large number of uniarmed chromosomes and multiple NORs in a terminal position in most species and may be a derived condition in the Loricariidae
    • 

    corecore