311 research outputs found

    Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning

    Get PDF
    1. Scientific understanding of acidification in aquatic ecosystems relies on effective assessment, which at present is mostly limited to chemical and sometimes structural biological variables. Effects on ecosystem functioning are, in contrast, largely neglected. Litter breakdown is a potentially useful, highly integrative and crucial process that could enhance such assessment programmes. 2. Breakdown rates of beech Fagus sylvatica leaves were determined in 25 woodland headwater streams along an acidification gradient in the Vosges Mountains, France. Additional data relating to micro-organisms (microbial respiration, fungal biomass and degree of conditioning measured as leaf palatability) and macroinvertebrates (shredder diversity, abundance and biomass) associated with decomposing leaves were collected to elucidate the mechanisms underlying leaf breakdown. 3. Breakdown rates varied more than 20-fold between the most acidified and circum- neutral sites (k = 0·0002–0·0055 day−1). Stream water alkalinity and total Al concen- tration together accounted for 88% of the variation in litter breakdown rates among streams. Microbial factors associated with decaying leaves, particularly microbial respiration, declined with increasing stream acidity and were significantly related to Ca2+ and total Al concentrations. 4. Total abundance, biomass and richness of leaf-shredding invertebrates associated with decomposing leaves were not related to stream acidity. However, the abundance and biomass of the amphipod Gammarus fossarum, an acid-sensitive and particularly efficient leaf-shredder, showed a strong positive relationship with leaf breakdown rate. Gammarus abundance and microbial respiration together accounted for 85% of the variation in litter breakdown rates among streams. 5. Synthesis and applications. These results indicate that leaf-litter breakdown responds strongly to stream acidification, with both microbial decomposers and invertebrate detritivores markedly affected. Measuring leaf breakdown rate may be developed into a simple, powerful and low-cost tool for assessing a critical component of ecosystem functioning. We advocate further investigation of this approach for the routine bio- monitoring of freshwaters affected by, or recovering from, other anthropogenic stresses

    Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages

    Get PDF
    The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long appendages at their rear. We studied both types of oscillatory flows around small cylinders using stroboscopic micro-particle image velocimetry as a function of flow velocity and frequency. Theoretical predictions are well fulfilled for both longitudinal and transverse flows. Transverse flow leads to higher velocities than longitudinal flow in the boundary layer over a large range of angles between flow and cylinder. The strong spatial heterogeneity of flow velocities around filiform-shaped appendages is a rich source of information for different flow-sensing animals. Our results suggest that crickets could perceive the direction of incoming danger by having air-flow-sensitive hairs positioned around their entire cerci. Implications for biomimetic flow-sensing MEMS are also presented

    Climate Change in the High Andes:implications and adaptation strategies for small-scale farmers

    Get PDF
    Abstract: Global climate change represents a major threat to sustainable farming in the Andes. Farmers have used local ecological knowledge and intricate production systems to cope, adapt and reorganize to meet climate uncertainty and risk, which have always been a fact of life. Those traditional systems are generally highly resilient, but the predicted effects, rates and variability of climate change may push them beyond their range of adaptability. This article examines the extent of actual and potential impacts of climate variability and change on small-scale farmers in the highland Andes of Bolivia, Ecuador and Peru. It describes how climate change impacts agriculture through deglaciation, changes in hydrology, soil and pest and disease populations. The article highlights some promising adaptive strategies currently in use by or possible for producers, rural communities and local institutions to mitigate climate change effects while preserving the livelihoods and environmental and social sustainability of the regio

    A cost-effective method to quantify biological surface sediment reworking

    Get PDF
    We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g., luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2.d-1, such as triggered by intermediate density (774 m-2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2.d-1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution

    Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient

    Get PDF
    We compared autumn decomposition rates of European alder leaves at four sites along the Lasset–Hers River system, southern France, to test whether changes in litter decomposition rates from upstream (1,300 m elevation) to downstream (690 m) could be attributed to temperature-driven differences in microbial growth, shredder activity, or composition of the shredder community. Alder leaves lost 75–87% of original mass in 57 days, of which 46–67% could be attributed to microbial metabolism and 8–29% to shredder activity, with no trend along the river. Mass loss rates in both fine-mesh (excluding shredders) and coarse-mesh (including shredders) bags were faster at warm, downstream sites (mean daily temperature 7–8°C) than upstream (mean 1–2°C), but the differ- ence disappeared when rates were expressed in heat units to remove the temperature effect. Mycelial biomass did not correlate with mass loss rates. Faster mass loss rates upstream, after temperature correction, evidently arise from more efficient shredding by Nemourid stoneflies than by the Leuctra-dominated assemblage downstream. The influence of water temperature on decomposition rate is therefore expressed both directly, through microbial metabolism, and indirectly, through the structure of shredder commu- nities. These influences are evident even in cold water where temperature variation is small

    Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown.

    Get PDF
    Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species

    Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols

    Get PDF
    Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest.FDM acknowledges financial support from the Swedish Research Council (Grant No. 621-2014-4646) and SNIC (Swedish National Infrastructure for Computing) for providing computer resources. The work in Limoges (IB and PT) is supported by the “Conseil Régional du Limousin”. PT gratefully acknowledges the support by the Operational Program Research and Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic). IB gratefully acknowledges financial support from “Association Djerbienne en France”

    Pesticidas y su impacto sobre la entomofauna en fincas de agricultores andinos de Ecuador

    Get PDF
    El desconocimiento del uso racional de insecticidas conlleva a que agricultores de países en desarrollo como Ecuador sobrepasen el límite de aplicaciones permitidas. Además, poco se conoce del efecto que tienen los insecticidas sobre la entomofauna de Lupinus mutabilis (chocho). Este estudio busca analizar el efecto de los insecticidas sobre plagas e insectos benéficos con especial énfasis en polinizadores, sin descuidar el efecto sobre el rendimiento del cultivo. Se tomó como referencia la entomofauna asociada al cultivo de chocho. Se evaluaron 79 campos agrícolas en Cotopaxi Ecuador, con tratamientos con químico, sin químico y sin ningún control. Una vez socializado el experimento, los agricultores eligieron el manejo para sus campos con las recomendaciones de los investigadores. Para el monitoreo de insectos se usaron trampas pegantes y de plato de color amarillo. Se obtuvieron variables de abundancia y diversidad de insectos. El uso y aplicación de plaguicidas se registró usando encuestas desarrolladas con Survey 123. Los resultados muestran que la aplicación de insecticidas no siempre fue efectiva en el control de las plagas analizadas. Además, los tratamientos evaluados tuvieron efectos distintos según el tipo de insecto polinizador analizado. Por otro lado, se observó que ciertas plagas, en especial barrenadores podrían inducir un efecto de respuesta positivo (70% más de flores) que beneficiaría el rendimiento final. Estos resultados podrían sugerir que los controles de plagas para este cultivo deberían ser más dirigidos y realizarse antes de la floración, esto evitaría causar daños a polinizadores, barrenadores y probablemente enemigos naturales de plagas.//Ignorance of the rational use of insecticides leads farmers in developing countries such as Ecuador to exceed the limit of permitted applications. In addition, little is known about the effect of insecticides on entomofauna of Lupinus mutabilis (lupine). This study aims to analyze the effect of insecticides on pests and beneficial insects, with special emphasis on pollinators, without neglecting the effect on crop yield. The entomofauna associated with Andean Lupin was used as a reference. Seventy-nine agricultural fields were evaluated in Cotopaxi-Ecuador, with the treatments with chemicals, without chemicals, and without any control. Once the experiment was presented to the participating group, the farmers chose the management treatment for their fields with recommendations from the researchers. For insect monitoring, yellow sticky and plate traps were used to obtain variables of insect abundance and diversity. The use and application of pesticides was recorded using surveys developed with Survey 123. The results showed that the application of insecticides was not always effective in controlling the pests studied. In addition, the treatments evaluated had different effects according to the type of insect pollinator analyzed. On the other hand, the study also showed that certain pests, especially borers, could induce a positive response (70% more flowers) that can actually benefit the final yield. These results suggest that pest controls for this crop should be more targeted and carried out before flowering to avoid causing damage to pollinators and borers, as well as natural enemies of pests

    Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus

    Get PDF
    Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is approximately 1 cm long, and is covered with 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement vectors, have been characterized semi-quantitatively in studies over the last 40 years, and have been shown to be very stereotypical across different animals in this species. Although the cercal sensory system has been the focus of many studies in the areas of neuroethology, development, biomechanics, sensory function and neural coding, there has not yet been a quantitative study of the functional morphology of the receptor array of this important model system.We present a quantitative characterization of the structural characteristics and functional morphology of the cercal filiform hair array. We demonstrate that the excitatory direction along each hair's movement plane can be identified by features of its socket that are visible at the light-microscopic level, and that the length of the hair associated with each socket can also be estimated accurately from a structural parameter of the socket. We characterize the length and directionality of all hairs on the basal half of a sample of three cerci, and present statistical analyses of the distributions.The inter-animal variation of several global organizational features is low, consistent with constraints imposed by functional effectiveness and/or developmental processes. Contrary to previous reports, however, we show that the filiform hairs are not re-identifiable in the strict sense
    corecore