557 research outputs found

    Superlattice properties of carbon nanotubes in a transverse electric field

    Get PDF
    Electron motion in a (n,1) carbon nanotube is shown to correspond to a de Broglie wave propagating along a helical line on the nanotube wall. This helical motion leads to periodicity of the electron potential energy in the presence of an electric field normal to the nanotube axis. The period of this potential is proportional to the nanotube radius and is greater than the interatomic distance in the nanotube. As a result, the behavior of an electron in a (n,1) nanotube subject to a transverse electric field is similar to that in a semiconductor superlattice. In particular, Bragg scattering of electrons from the long-range periodic potential results in the opening of gaps in the energy spectrum of the nanotube. Modification of the bandstructure is shown to be significant for experimentally attainable electric fields, which raises the possibility of applying this effect to novel nanoelectronic devices.Comment: 7 pages, 3 figure

    Did Frédéric Chopin die from heart failure?

    Get PDF
    On October 17, 1849, Poland's greatest composer, FrĂ©dĂ©ric Chopin (1810–1849) died aged 39. His cause of death remains unknown. An investigation of the documental sources was performed to reconstruct the medical history of the artist. Since his earliest years, his life had been dominated by poor health. Recurrent episodes of cough, fever, headaches, lymphadenopathy- a series of symptoms that may be attributed to viral respiratory infections- manifested in his teens. Later in life, he had chest pain, hemoptysis, hematemesis, neuralgia, and arthralgia. Exhaustion and breathlessness characterized all his adult life. Coughing, choking, and edema of the legs and ankles manifested four months before his death. Several hypotheses ranging from cystic fibrosis to alpha-1 anti-trypsin deficiency and pulmonary tuberculosis have been proposed to explain Chopin's lifelong illness. We suggest that Chopin had dilated cardiomyopathy with consequent heart failure and cirrhosis that caused his death

    Computational Study of Tunneling Transistor Based on Graphene Nanoribbon

    Full text link
    Tunneling field-effect transistors (FETs) have been intensely explored recently due to its potential to address power concerns in nanoelectronics. The recently discovered graphene nanoribbon (GNR) is ideal for tunneling FETs due to its symmetric bandstructure, light effective mass, and monolayer-thin body. In this work, we examine the device physics of p-i-n GNR tunneling FETs using atomistic quantum transport simulations. The important role of the edge bond relaxation in the device characteristics is identified. The device, however, has ambipolar I-V characteristics, which are not preferred for digital electronics applications. We suggest that using either an asymmetric source-drain doping or a properly designed gate underlap can effectively suppress the ambipolar I-V. A subthreshold slope of 14mV/dec and a significantly improved on-off ratio can be obtained by the p-i-n GNR tunneling FETs

    A Comparative Study of the Parker Instability under Three Models of the Galactic Gravity

    Get PDF
    To examine how non-uniform nature of the Galactic gravity might affect length and time scales of the Parker instability, we took three models of gravity, uniform, linear and realistic ones. To make comparisons of the three gravity models on a common basis, we first fixed the ratio of magnetic pressure to gas pressure at α\alpha = 0.25, that of cosmic-ray pressure at ÎČ\beta = 0.4, and the rms velocity of interstellar clouds at asa_s = 6.4 km s−1^{-1}, and then adjusted parameters of the gravity models in such a way that the resulting density scale heights for the three models may all have the same value of 160 pc. Performing linear stability analyses onto equilibrium states under the three models with the typical ISM conditions, we calculate the maximum growth rate and corresponding length scale for each of the gravity models. Under the uniform gravity the Parker instability has the growth time of 1.2×108\times10^{8} years and the length scale of 1.6 kpc for symmetric mode. Under the realistic gravity it grows in 1.8×107\times10^{7} years for both symmetric and antisymmetric modes, and develops density condensations at intervals of 400 pc for the symmetric mode and 200 pc for the antisymmetric one. A simple change of the gravity model has thus reduced the growth time by almost an order of magnitude and its length scale by factors of four to eight. These results suggest that an onset of the Parker instability in the ISM may not necessarily be confined to the regions of high α\alpha and ÎČ\beta.Comment: Accepted for publication in ApJ, using aaspp4.sty, 18 text pages with 9 figure

    An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement

    Get PDF
    This paper presents an open, multi-vendor, multi-field strength magnetic resonance (MR) T1-weighted volumetric brain imaging dataset, named Calgary-Campinas-359 (CC-359). The dataset is composed of images of older healthy adults (29-80 years) acquired on scanners from three vendors (Siemens, Philips and General Electric) at both 1.5 T and 3 T. CC-359 is comprised of 359 datasets, approximately 60 subjects per vendor and magnetic field strength. The dataset is approximately age and gender balanced, subject to the constraints of the available images. It provides consensus brain extraction masks for all volumes generated using supervised classification. Manual segmentation results for twelve randomly selected subjects performed by an expert are also provided. The CC-359 dataset allows investigation of 1) the influences of both vendor and magnetic field strength on quantitative analysis of brain MR; 2) parameter optimization for automatic segmentation methods; and potentially 3) machine learning classifiers with big data, specifically those based on deep learning methods, as these approaches require a large amount of data. To illustrate the utility of this dataset, we compared to the results of a supervised classifier, the results of eight publicly available skull stripping methods and one publicly available consensus algorithm. A linear mixed effects model analysis indicated that vendor (p - value < 0.001) and magnetic field strength (p - value < 0.001) have statistically significant impacts on skull stripping results170482494CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP311228/2014-3; 157534/2015-488881.062158/2014-012013/07559-3; 2013/23514-0; 2016/18332-

    Phase-resolved optical and X-ray spectroscopy of low-mass X-ray binary X1822-371

    Get PDF
    (Abridged) X1822-371 is the prototypical accretion disc corona X-ray source, a low-mass X-ray binary viewed at very high inclination, thereby allowing the disc structure and extended disc coronal regions to be visible. We study the structure of the accretion disc in X1822-371 by modelling the phase-resolved spectra both in optical and X-ray regime. We analyse high time resolution optical ESO/VLT spectra of X1822-371 to study the variability in the emission line profiles. In addition, we use data from XMM-Newton space observatory to study phase-resolved as well as high resolution X-ray spectra. We apply the Doppler tomography technique to reconstruct a map of the optical emission distribution in the system. We fit multi-component models to the X-ray spectra. We find that our results from both the optical and X-ray analysis can be explained with a model where the accretion disc has a thick rim in the region where the accretion stream impacts the disc. The behaviour of the H_beta line complex implies that some of the accreting matter creates an outburst around the accretion stream impact location and that the resulting outflow of matter moves both away from the accretion disc and towards the centre of the disc. Such behaviour can be explained by an almost isotropic outflow of matter from the accretion stream impact region. The optical emission lines of HeII 4686 and 5411 show double peaked profiles, typical for an accretion disc at high inclination. However, their velocities are slower than expected for an accretion disc in a system like X1822-371. This, combined with the fact that the HeII emission lines do not get eclipsed during the partial eclipse in the continuum, suggests that the line emission does not originate in the orbital plane and is more likely to come from above the accretion disc, for example the accretion disc wind.Comment: 10 pages, 13 figures, accepted for publication in A&

    The FORS Deep Field Spectroscopic Survey

    Full text link
    We present a catalogue and atlas of low-resolution spectra of a well defined sample of 341 objects in the FORS Deep Field. All spectra were obtained with the FORS instruments at the ESO VLT with essentially the same spectroscopic set-up. The observed extragalactic objects cover the redshift range 0.1 to 5.0. 98 objects are starburst galaxies and QSOs at z > 2. Using this data set we investigated the evolution of the characteristic spectral properties of bright starburst galaxies and their mutual relations as a function of the redshift. Significant evolutionary effects were found for redshifts 2 < z < 4. Most conspicuous are the increase of the average C IV absorption strength, of the dust reddening, and of the intrinsic UV luminosity, and the decrease of the average Ly alpha emission strength with decreasing redshift. In part the observed evolutionary effects can be attributed to an increase of the metallicity of the galaxies with cosmic age. Moreover, the increase of the total star-formation rates and the stronger obscuration of the starburst cores by dusty gas clouds suggest the occurrence of more massive starbursts at later cosmic epochs.Comment: 24 pages, 25 figures (35 PS files), 4 tables, accepted for publication in A&A. v2: minor typos corrected and references update

    Spectropolarimetry of the Type IIb Supernova 2001ig

    Get PDF
    We present spectropolarimetric observations of the Type IIb SN 2001ig in NGC 7424; conducted with the ESO VLT FORS1 on 2001 Dec 16, 2002 Jan 3 and 2002 Aug 16 or 13, 31 and 256 days post-explosion. These observations are at three different stages of the SN evolution: (1) The hydrogen-rich photospheric phase, (2) the Type II to Type Ib transitional phase and (3) the nebular phase. At each of these stages, the observations show remarkably different polarization properties as a function of wavelength. We show that the degree of interstellar polarization is 0.17%. The low intrinsic polarization (~0.2%) at the first epoch is consistent with an almost spherical (<10% deviation from spherical symmetry) hydrogen dominated ejecta. Similar to SN 1987A and to Type IIP SNe, a sharp increase in the degree of the polarization (~1%) is observed when the outer hydrogen layer becomes optically thin by day 31; only at this epoch is the polarization well described by a ``dominant axis.'' The polarization angle of the data shows a rotation through ~40 degrees between the first and second epochs, indicating that the asymmetries of the first epoch were not directly coupled with those observed at the second epoch. For the most polarized lines, we observe wavelength-dependent loop structures in addition to the dominant axis on the Q-U plane. We show that the polarization properties of Type IIb SNe are roughly similar to one another, but with significant differences arising due to line blending effects especially with the high velocities observed for SN 2001ig. This suggests that the geometry of SN 2001ig is related to SN 1993J and that these events may have arisen from a similar binary progenitor system.Comment: 42 pages, 12 figures (figs. 11 and 12 are both composed of four subpanels, figs. 6,7,8,11 and 12 are in color, fig. 1 is low res and a high res version is available at http://www.as.utexas.edu/~jrm/), ApJ Accepte

    Biologic Rhythms Derived from Siberian Mammoths' Hairs

    Get PDF
    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∌31 cms/year and ∌16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna

    The FORS Deep Field: Field selection, photometric observations and photometric catalog

    Get PDF
    The FORS Deep Field project is a multi-colour, multi-object spectroscopic investigation of an approx. 7 times 7 region near the south galactic pole based mostly on observations carried out with the FORS instruments attached to the VLT telescopes. It includes the QSO Q 0103-260 (z = 3.36). The goal of this study is to improve our understanding of the formation and evolution of galaxies in the young Universe. In this paper the field selection, the photometric observations, and the data reduction are described. The source detection and photometry of objects in the FORS Deep Field is discussed in detail. A combined B and I selected UBgRIJKs photometric catalog of 8753 objects in the FDF is presented and its properties are briefly discussed. The formal 50% completeness limits for point sources, derived from the co-added images, are 25.64, 27.69, 26.86, 26.68, 26.37, 23.60 and 21.57 in U, B, g, R, I, J and Ks (Vega-system), respectively. A comparison of the number counts in the FORS Deep Field to those derived in other deep field surveys shows very good agreement.Comment: 15 pages, 11 figures (included), accepted for publication in A&
    • 

    corecore