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Electron motion in asn,1d carbon nanotube is shown to correspond to a de Broglie wave propagating along
a helical line on the nanotube wall. This helical motion leads to periodicity of the electron potential energy in
the presence of an electric field normal to the nanotube axis. The period of this potential is proportional to the
nanotube radius and is greater than the interatomic distance in the nanotube. As a result, the behavior of an
electron in asn,1d nanotube subject to a transverse electric field is similar to that in a semiconductor super-
lattice. In particular, Bragg scattering of electrons from the long-range periodic potential results in the opening
of gaps in the energy spectrum of the nanotube. Modification of the band structure is shown to be significant
for experimentally attainable electric fields, which raises the possibility of applying this effect to nanoelec-
tronic devices.
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I. INTRODUCTION

Carbon nanotubessCNTsd are cylindrical molecules with
nanometer diameter and micrometer length. Since the dis-
covery of CNTs just over a decade ago,1 their unique elec-
tronic and structural properties have aroused great excite-
ment in the scientific community and promise a broad range
of applications. Significant theoretical effort has been applied
to develop refined models of the electronic structure of car-
bon nanotubes, as well as their optical and transport proper-
ties, although even a simple tight-binding model2 yielding
analytic solutions is sufficient to elucidate key nanotube fea-
tures se.g., whether a CNT of given structure will exhibit
metallic or semiconducting propertiesd. In this paper we ap-
ply such a model to a particular type of single-wall CNT, a
so-calledsn,1d nanotube. In Sec. II we show that for such a
CNT the electron motion corresponds to a de Broglie wave
propagating along a helical line. The theoretical treatment of
this type of CNT in an electric field perpendicular to the
nanotube axisstransverse electric fieldd can be reduced to a
one-dimensional superlattice problemssee Sec. IIId. Such su-
perlattice behavior of current-carrying electrons suggests the
application of CNTs to the development of carbon nanotube-
based devices.

II. ENERGY SPECTRUM OF „n ,1… NANOTUBES

A single-wall carbon nanotube may be considered as a
single graphite sheet rolled into a cylinder. The electronic
energy spectrum of the CNT is therefore intimately related to
the energy spectrum«g2Dskd of a two-dimensionals2Dd
graphite sheet, which can be written in the tight-binding ap-
proximation as2

«g2Dskd = ± g0UexpS ikxa
Î3

D + 2 expS−
ikxa

2Î3
DcosSkya

2
DU ,

s1d

wherekx andky are the electron wave vector components in
the graphite sheet plane along thex andy axes, respectively

ssee Fig. 1d. In the energy spectrums1d, the plus and minus
signs correspond to the conduction and valence bands, re-
spectively, g0<3 eV is the transfer integral between
p-orbitals of neighboring carbon atoms, and the lattice con-
stant a= ua1u= ua2u=Î33ac-c=2.46 Å, wherea1 and a2 are
the 2D basis vectors andac-c=1.42 Å is the interatomic dis-
tance in graphite. The way in which the 2D graphite sheet is
rolled up to form the CNT can be described by two vectors,
the translation vectorT and the chiral vectorCh ssee Fig. 1d.
The chiral vectorCh can be expressed in terms of the 2D
basis vectors of the unrolled graphite sheet asCh=na1
+ma2, where the pair of integerssn,md is used as a standard
notation2 for a CNT of given crystal structure. To obtain the
electronic energy spectrum of thesn,md CNT, we begin by
expressing the wave vectork in terms of components along
T andCh ask =kiT /T+k'Ch/Ch, whereki andk' are sub-
ject to the following constraints: −p /T,ki øp /T and k'

=2pl /Ch sl =0,1,2, . . . ,N−1d. The integerl represents the
electron angular momentum along the nanotube axis and

N =
2sn2 + m2 + nmd

dR
, s2d

is the number of elementary atomic cells consisting of two
carbon atomssA,Bd per areauCh3T u. The numberdR ap-
pearing in Eq.s2d is the greatest common divisor of the two
integerss2n+m,2m+nd. The lengths of the chiral vector and
translation vector are given byCh=aÎn2+m2+nm and T
=Î3Ch/dR, respectively.

The energy spectrum of asn,md CNT can be obtained by
expressingkx andky in terms ofki andk', and substituting
them in Eq.s1d, thus yielding

« = ± g0UexpF iÎ3a

2
ski cosu − k' sinudG + 2 cosSksa

2
DU ,

s3d

where we have introduced the new parameterks=k' cosu
+ki sinu, and the chiral angleu suuuøp /6d shown in Fig. 1.
Taking into account that
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cosu =
2n + m

2În2 + m2 + nm
, sinu =

Î3m

2În2 + m2 + nm
, s4d

we have, formÞ0, the equation

Î3ski cosu − k' sinuda = fs2n + mdksa − 2k'Chg/m. s5d

Substituting Eqs.s4d and s5d into Eq. s3d we obtain

« = ± g0UexpFiS2n + m

2m
ksa −

k'Ch

m
DG + 2 cosSksa

2
DU ,

s6d

which, together with the constraintk'=2pl /Ch, yields an
electron energy spectrum of the form

« = ± g0F1 + 4 cosSksa

2
DcosS2n + m

2m
ksa −

2pl

m
D

+ 4 cos2Sksa

2
DG1/2

. s7d

For m=1, Eq. s7d becomes independent ofl, and we obtain
the electron energy spectrum of asn,1d CNT in the form

« jsksd = s− 1d jg0F1+8 cosSn+1

2
ksaDcosSnksa

2
DcosSksa

2
DG1/2

,

s8d

where j =1,2 correspond to the valence and conduction
bands, respectively. It should be noted that the spectrums8d
depends on the parameterks alone, in contrast to the general
case of asn,md CNT, for which the electron energy spectrum
depends on two parametersski and k' are conventionally
usedd. This peculiarity of asn,1d CNT is a consequence of
its special crystal symmetry: thesn,1d CNT lattice can be
obtained by translation of an elementary two-atom cell along
a helical line on the nanotube wallssee Fig. 1d. As a result,
the parameterks has the meaning of an electron wave vector
along the helical line, and so any possible electron motion in
a sn,1d CNT can be described by a de Broglie wave propa-
gating along such a line. Thus,sn,1d CNTs represent a pre-
viously overlooked distinctive class of nanotubes, which

may be termed helical nanotubes. The electron energy spec-
trum of as4,1d CNT as a function of the helical wave number
ks is shown in Fig. 2. The band gap for this natotube closes at
ksa=2p /3, and it can be shown that the same is true for all
metallic sn,1d nanotubes.

III. HELICAL NANOTUBES IN A TRANSVERSE
ELECTRIC FIELD

Both descriptions of the energy spectrum of asn,1d
CNT—by two parameters,ki and k', or a single parameter
ks—are physically equivalent. However, the second descrip-
tion is more convenient for studies of electron processes de-
termined by the above-mentioned helical symmetry of elec-
tron motion, and allows one to discover new physical effects
se.g., the electron-electron interaction should be strongly
modified for helical one-dimensional motion3d. We shall now
show that such helical symmetry results in superlattice be-
havior of a sn,1d CNT in the presence of an electric field
oriented perpendicular to the nanotube axissa transverse
electric fieldd.

The potential energy of an electron on a helix subject to a
transverse electric field takes the form

U = eERcosS2ps

l0
D , s9d

wheree is the electron charge,E is the electric field strength,
R=Ch/2p is the radius of the CNT,s is the electron coordi-
nate along the above-mentioned helical line,

l0 =
2pR

cosu
=

2asn2 + n + 1d
2n + 1

, s10d

is the length of a single coil of the helix, and the electric
potential is assumed to be zero at the axis of the CNT. The
potential energys9d is periodic in the electron coordinates
along the helical line and the period of the potential is equal
to l0. Since this periods10d is proportional to the CNT radius
R and is greater than the interatomic distanceac-c, the CNT

FIG. 1. The unrolled graphite sheet. By connecting the head and
tail of the chiral vectorCh we can construct, for example, as4,1d
carbon nanotube. The dashed lines will then form a helical line on
the nanotube wall. FIG. 2. Electron energy spectrum of a metallics4,1d CNT as a

function of the wave numberks along a helical line on the nanotube
wall.
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assumes typical superlattice properties. In particular, Bragg
reflection of electron waves with wave vectorsks= ±p / l0
results in energy splitting within the conduction and valence
bands of the CNT. We shall now study this effect in more
detail.

In the framework of the tight-binding model,2 considering
only three nearest neighbors to each atom, the wave func-
tions for electron states with corresponding energiess8d can
be written as

c jsksd =
1

Î2M
o

t
Fct

sAd + s− 1d j h * sksd
uhsksdu

ct
sBdGexpsikstad,

s11d

whereM is the total number of two-atom cells in the CNT,
ct

sAd andct
sBd arep-orbital wave functions for the two carbon

atomsA andB, respectively,t is the number along the helical
line for an elementary cell consisting of these two atomsssee
Fig. 1d, and hsksd=1+exps−iksad+expsinksad. The value of
the potential energyU in the external electric field at the
position of a particular atom of the CNT depends on the
angle between the electric field vector and the vector normal
to the nanotube axis which passes through this atom. As a
consequence, the coordinate of atomA in cell numbert along
the helical line is

s= at +
l0
2p

f. s12d

The anglef is defined in such a way thatRcosff+psn
+1d / sn2+n+1dg is the coordinate in the direction of the elec-
tric field swith zero at the CNT axisd of atom B in the cell
with t=0. Using Eqs.s11d ands12d, we can write the matrix
element of the potential energys9d as

kcisks8duUuc jsksdl = Vij
+dcossksa−ks8a+2pa/l0d,1

+ Vij
−dcossksa−ks8a−2pa/l0d,1, s13d

where

Vij
± =

eER

4
F1 + s2di j − 1d

hsks8dh * sksd
uhsks8dhsksdu

expS± i
psn + 1d
n2 + n + 1

DG
3exps± ifd, s14d

anddab is the Kronecker delta. In the derivation of Eqs.s13d
ands14d we have also assumed that the external electric field
E is much less than the atomic field, i.e.,

E !
g0

ea
. s15d

This allows us to neglect any change in the atomic wave
functionsct

sAd and ct
sBd due to the fieldE, and we take into

account only the mixing of statess11d by the field. According
to Eq. s13d, the field mixes only electron statess11d with
wave vectors differing by 2p / l0. In this approximation, the
exact wave function in the presence of the electric field,
cEsksd, can be expressed as a superposition of wave func-
tions s11d with ks shifted by integer numbers of 2p / l0:

cEsksd = o
j=1

2

o
n=0

m−1

bjnc jsks + 2pn/l0d. s16d

To ensure that in Eq.s16d we sum only overdifferentelec-
tron states, the parameterm should be the smallest integer
defined by the conditionc jsksd=c jsks+2pm / l0d. This condi-
tion, together with the 2p /a periodicity of c jsksd, implies
thatm / l0=b /a, whereb is the smallest integer for which this
equality is satisfied. Using Eq.s10d together with Eq.s2d one
can obtainb=s2n+1d /dR, which yieldsm=N. This result has
a transparent physical interpretation, since the two closest
carbon atoms equivalent with respect to a translation parallel
to the nanotube axis are separated by a distanceNa along a
helical line.

Substituting the wave functions16d into the Schrödinger
equation with the potential energys9d we obtain a system of
equations for the coefficientsbjn entering Eq.s16d,

f« jsks + 2pn/l0d − «Esksdgbjn

+ o
i=1

2

o
n8=0

N−1

kc jsks + 2pn/l0duUucisks + 2pn8/l0dlbin8 = 0,

s17d

wheren=0,1,2, . . . ,N−1, the indexj takes the value 1 or 2
for the valence and conduction bands, respectively, and
«Esksd is the electron energy in the presence of the transverse
electric field.

Let us consider the statesks=−p / l0 andp / l0 in the same
CNT energy band, which are at the boundaries of a Brillouin
zone created by the periodic superlattice potentials9d of the
external field. One should expect the appearence of energy
gaps at these values ofks due to Bragg reflection of electron
waves from the superlattice potential. These states are sepa-
rated by 2p / l0 and have the same energy, which means that
they are strongly mixed by the electric field. For these values
of ks it can be shown that the contributions to the sum in Eq.
s16d from all other states can be neglected for sufficiently
weak fields,E!g0a/ seR2d. As a result, the system of equa-
tions s17d is reduced to just two equations, from which the
energy of Bragg band splittingD« is found to be

D« = 2ukc js− p/l0duUuc jsp/l0dlu , eER. s18d

Thus, even a small electric field results in a superlattice-like
change of the electron energy spectrum insn,1d CNTs, with
the appearance of Bragg energy gaps proportional to the field
amplitudeE and the nanotube radiusR. Notably, this depen-
dence of the Bragg gaps on the external field and radius
applies to any helical quasi-one-dimensional nanostructure in
a transverse electric field: this generic feature arises from the
symmetry of the nanostructure, and is independent of the
parameters of the tight-binding model used to derive Eq.
s18d. For example, it should be possible to observe a similar
effect in recently fabricated InGaAs/GaAs and Si/SiGe
semiconductor nanohelices.4,5

It should be emphasized that for single-wall carbon nano-
tubes the discussed superlattice behavior is a unique feature
of sn,1d structures only. For the general case of asn,md CNT
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with mÞ1, the energy spectrums7d depends on the quantum
numberl in addition toks. As already mentioned,l represents
the projection of the electron angular momentum on the
nanotube axis, and it follows from the corresponding selec-
tion rule that the transverse electric field only mixes electron
states with angular momentuml and l ±1. For mÞ1, how-
ever, states withl differing by one correspond to different
subbands, and in general have different energies forks
= ±p / l0, so that there is no Bragg scattering between these
states. The only effect of the electric field, therefore, is to
mix electron states with different energies, which does not
lead to noticeable modification of the dispersion curves for
weak electric fields.6

For the particular case of as1,1d CNT the energy spec-
trum can be obtained in analytic form for any electron state,
since the system of equationss17d consists of four equations
only. This system results in a biquadratic equation for the
eigenvalues«Esksd,

«E
4sksd − «E

2sksdsw1
2 + w2

2 + 2v1 + 2v2d + sv2 − v1 + w1w2d2 = 0,

s19d

where w1=g0f1+2 cossksadg, w2=g0f1−2 cossksadg, v1

=fV cossf+p /3dg2, v2=fÎ3V sinsf+p /3dg2, and V
=Î3eEa/ s4pd. The energy spectrum«Esksd obtained from
Eq. s19d is shown in Fig. 3ssolid linesd for a range of wave
vectors −p /aøksøp /a. In the figure, positive energies cor-
respond to the conduction band and negative energies to the
valence band. The energy spectrum in the absence of the
field is shown for comparisonsdashed linesd. According to
Eq. s10d, the superlattice periodl0 for a s1,1d CNT is equal to
twice the lattice constanta. Therefore, as can be seen in Fig.
3, the width of the first Brillouin zone in the presence of a
transverse electric field is half that without the field. It can
also be seen that the electric field opens gaps in the disper-
sion curve atks= ±p / s2ad due to the aforementioned Bragg
reflection of electron waves. For electric fields satisfying
condition s15d, we obtain from Eq.s19d the Bragg gap

D« =
Î3eEa

2p
ucossf + p/3du. s20d

The result in Eq.s20d can also be obtained from the more
general formulas18d. It should be noted that the Bragg gap,
as well as the whole energy spectrum of the CNT in a trans-
verse electric field, depends on the orientation of the CNT
relative to the fieldsi.e., on the angle of rotationfd. In par-
ticular, whenf=p /6 the Bragg gaps20d is zero: for this
angle the values of the electric field potential at atomsA and
B in a s1,1d CNT are equal in magnitude but opposite in sign,
and so the mean value of the potential within one elementary
cell of the CNT is zero.

In the general case of asn,1d nanotube, for external elec-
tric field intensities attainable in experimentsE
,105 V/cmd and for a typical nanotube of radiusR,10 Å,
the value of the Bragg gap given bys18d is D«,10−2 eV,
which is comparable to the characteristic energy of band
splitting in conventional semiconductor superlattices. As a
consequence, the discussed superlattice effects generated by
the transverse electric field insn,1d CNTs should be observ-

able in experiments, and may take place in existing CNT
field-effect devices.7 The inherent regularity of a nanotube-
based superlattice, with the superlattice period determined by
the CNT radius, presents a distinct advantage over semicon-
ductor superlattices, in which monolayer fluctuations are un-
avoidable. A whole range of new nanoelectronic devices
based on the discussed superlattice properties ofsn,1d CNTs
can be envisaged, including Bloch oscillators8 and quantum
cascade lasers.9 An evaluation of the feasibility of these de-
vices and selection of their optimal parameters will undoubt-
edly form the subject of extensive future research.

IV. CONCLUSIONS

In this paper we have discussed a previously overlooked
class of CNTs, which may be termed ‘helical’ nanotubes.
While we have concentrated on the superlattice behavior of
such nanotubes in a transverse electric field, we also expect
their unique symmetry to manifest itself in modification of
the electron-electron, electron-phonon, and electron-photon
interactions. In addition, we have shown that superlattice be-
havior in a transverse electric field is a generic feature of
helical quasi-one-dimensional nanostructures, which raises
new possibilities for developing optoelectronic devices oper-
ating in the terahertz range of frequencies.
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FIG. 3. Electron energy spectrum of as1,1d CNT in the presence
of a transverse electric fieldE=g0/ seac-cd with f=0 ssolid linesd
and without the electric fieldsdashed linesd. The inner pair of ver-
tical dotted lines indicates the first Brillouin zone boundary in the
presence of the field, whereas the outer pair corresponds to the first
Brillouin zone boundary without the field.D« is the Bragg gap
opened by the electric field.
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