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Superlattice properties of carbon nanotubes in a transverse electric field
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Electron motion in gn, 1) carbon nanotube is shown to correspond to a de Broglie wave propagating along
a helical line on the nanotube wall. This helical motion leads to periodicity of the electron potential energy in
the presence of an electric field normal to the nanotube axis. The period of this potential is proportional to the
nanotube radius and is greater than the interatomic distance in the nanotube. As a result, the behavior of an
electron in a(n, 1) nanotube subject to a transverse electric field is similar to that in a semiconductor super-
lattice. In particular, Bragg scattering of electrons from the long-range periodic potential results in the opening
of gaps in the energy spectrum of the nanotube. Modification of the band structure is shown to be significant
for experimentally attainable electric fields, which raises the possibility of applying this effect to nanoelec-
tronic devices.
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I. INTRODUCTION (see Fig. 1 In the energy spectrurtl), the plus and minus

Carbon nanotube€CNTS are cylindrical molecules with  SI9NS correspond to the conduction and valence bands, re-
nanometer diameter and micrometer length. Since the digtPeCtively, y~3 eV is the transfer integral between
covery of CNTs just over a decade agtheir unique elec- w-orbltﬁls of_nag_h?_ormg c_arbongtoms, and the lattice con-
tronic and structural properties have aroused great excit F:Zn;g_b'%'i; |3(23|c_tc§rgsxaar;ic_—2i4fz A ivsvr:ﬁ;eﬁlte&rlgg) r?ficaé?s-
ment in the scientific community and promise a broad rang ance in graphite. The wa-;Tn Which the 2D graphite sheet is
of applications. Significant theoretical effort has been applie olled up to form -the CNT can be described by two vectors
to develop refined models of the electronic structure of carg '

: ; he translation vectof and the chiral vecto€,, (see Fig. 1
bon nanotubes, as well as their optical and transport propefyo chiral vectorC,, can be expressed in terms of the 2D
ties, although even a simple tight-binding mddgielding

X . . . : basis vectors of the unrolled graphite sheet Gs=na;
analytic solutions is sufficient to elucidate key nanotube feas may,, where the pair of integei®,m) is used as a standard

tures (e.g., whether a CNT of given structure will exhibit notatior? for a CNT of given crystal structure. To obtain the
metallic or semiconducting propertiesn this paper we ap-  ejectronic energy spectrum of tiie,m) CNT, we begin by
ply such a model to a particular type of single-wall CNT, aexpressing the wave vectirin terms of components along
so-called(n, 1) nanotube. In Sec. Il we show that for such aT gnd Cy, ask=kT/T+k, C,/C,, wherek, andk, are sub-
CNT the electron motion corresponds to a de Broglie wavgect to the following constraints: m/T<k,<#/T and k,
propagating along a helical line. The theoretical treatment ok 2#1/C,, (I1=0,1,2,... N-1). The integerl represents the
this type of CNT in an electric field perpendicular to the electron angular momentum along the nanotube axis and
nanotube axigtransverse electric fieJccan be reduced to a
one-dimensional superlattice problésee Sec. I)l. Such su- N , (2)
perlattice behavior of current-carrying electrons suggests the dr
application_ of CNTs to the development of carbon nanotubejs the number of elementary atomic cells consisting of two
based devices. carbon atomgA,B) per area/C, X T|. The numberdg ap-
pearing in Eq(2) is the greatest common divisor of the two
Il ENERGY SPECTRUM OF (n,1) NANOTUBES integers(2n+m, 2m+n). The lengths of the chiral vector and
A single-wall carbon nanotube may be considered as &anslation vector are given bg,=ayn?+m?+nm and T
single graphite sheet rolled into a cylinder. The electronic=3C, /dg, respectively.
energy spectrum of the CNT is therefore intimately related to  The energy spectrum of @, m) CNT can be obtained by
the energy spectrunzgp(k) of a two-dimensional(2D)  expressing, andk, in terms ofk; andk, and substituting
graphite sheet, which can be written in the tight-binding apthem in Eq.(1), thus yielding

proximation a$ =
; ; exp{@(k, cosf—k, sin 0)} +Zcos<kia>‘
exp('k—xa) +2 ex;(— Ikxf)c05<l—(£> 2 ) 2/
V3 2\3 2
1

3

where we have introduced the new paramédterk, cosé
wherek, andk, are the electron wave vector components in+k; sin ¢, and the chiral anglé (|6| < m/6) shown in Fig. 1.
the graphite sheet plane along thandy axes, respectively Taking into account that

_2(n*+ P +nm)

Szi'}/o

ggon(K) = £ %
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FIG. 1. The unrolled graphite sheet. By connecting the head and 10806 04 02

tail of the chiral vectorCy, we can construct, for example,(4,1)
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carbon nanotube. The dashed lines will then form a helical line on

the nanotube wall.

sinp= ——m _Bm 4)
2Vn2+ m?+nm’

2n+m
2yn?+m?+nm
we have, fom# 0, the equation
\E(k” cosf-k, sind)a=[(2n+m)ka -2k, C,J/m. (5)

Substituting Eqgs(4) and(5) into Eq. (3) we obtain

exp[i(2n+mksa— kiCh)} +2 Co<kia> ‘ ,
2m m 2
(6)

which, together with the constraiit, =271/Cy, yields an
electron energy spectrum of the form

=t {1+4co:<kia>c05<2n+mksa—2—7ﬂ)
=0 2 2m m
1/2
+4co§<%‘>] : ()

For m=1, Eq.(7) becomes independent bfand we obtain
the electron energy spectrum of@, 1) CNT in the form

1/2
SJ(ks) = (_ 1)J'y0|:1+8 CO{%@)CO{%)Cc){k%a)} ,

(8

£=* Y

FIG. 2. Electron energy spectrum of a metaligl) CNT as a
function of the wave numbég along a helical line on the nanotube
wall.

may be termed helical nanotubes. The electron energy spec-
trum of a(4,1) CNT as a function of the helical wave number

ks is shown in Fig. 2. The band gap for this natotube closes at
ksa=27/3, and it can be shown that the same is true for all
metallic (n, 1) nanotubes.

IIl. HELICAL NANOTUBES IN A TRANSVERSE
ELECTRIC FIELD

Both descriptions of the energy spectrum of(m, 1)
CNT—Dby two parameterss; andk, or a single parameter
ks—are physically equivalent. However, the second descrip-
tion is more convenient for studies of electron processes de-
termined by the above-mentioned helical symmetry of elec-
tron motion, and allows one to discover new physical effects
(e.g., the electron-electron interaction should be strongly
modified for helical one-dimensional moti®nWe shall now
show that such helical symmetry results in superlattice be-
havior of a(n,1) CNT in the presence of an electric field
oriented perpendicular to the nanotube atastransverse
electric field.

The potential energy of an electron on a helix subject to a
transverse electric field takes the form

U :eERcos<2—7Ts>, (9

where j=1,2 correspond to the valence and conduction lo

bands, respectively. It should be noted that the spectB)m i _ o

depends on the parameteralone, in contrast to the general Wheree s the electron chargé is the electric field strength,
case of &n,m) CNT, for which the electron energy spectrum R=Cn/27 is the radius of the CNTsis the _electron coordi-
depends on two parametefls, and k, are conventionally Nate along the above-mentioned helical line,

_used. This peculiarity of a(n,1) CNT is a consequence of 27R  2a(n®+n+1)
its special crystal symmetry: th@,1) CNT lattice can be lo= =

obtained by translation of an elementary two-atom cell along cosd an+1
a helical line on the nanotube wdlee Fig. L As a result, is the length of a single coil of the helix, and the electric
the parametek; has the meaning of an electron wave vectorpotential is assumed to be zero at the axis of the CNT. The
along the helical line, and so any possible electron motion irpotential energy9) is periodic in the electron coordinate
a(n,1) CNT can be described by a de Broglie wave propa-along the helical line and the period of the potential is equal
gating along such a line. Thu@,1) CNTs represent a pre- to l,. Since this period10) is proportional to the CNT radius
viously overlooked distinctive class of nanotubes, whichR and is greater than the interatomic distalgg, the CNT

: (10
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assumes typical superlattice properties. In particular, Bragg 2 p-1

reflection of electron waves with wave vectdis= /1, (k) = 2 X by, 45(ks+ 27vlp). (16)

results in energy splitting within the conduction and valence j=1 =0

band_s of the CNT. We shall now study this effect in moretq ansure that in Eq16) we sum only ovedifferent elec-

detail. ) o L tron states, the parametgr should be the smallest integer
In the framework of the tight-binding modéLonsidering defined by the conditions; (kg =y (ks+ 2mu/1o). This condi-

;)_nly tfhreel ntataresttnt(aighp(t)r:s to each 3t.om, the wave fun%’on, together with the 2/a periodicity of i;(k), implies
ions for electron states with corresponding energ@san thatu/ly=pB/a, whereg is the smallest integer for which this

be written as equality is satisfied. Using EL0) together with Eq(2) one

1 A h* (k) g _ can obtain3=(2n+1)/dg, which yieldsu=N. This result has

k) = =2 | i + (- DI——=y(® |explikdta), a transparent physical interpretation, since the two closest
V2M Ih(ks)| - - ;

carbon atoms equivalent with respect to a translation parallel

(11) to the nanotube axis are separated by a dist&taalong a

. . helical line.
whereM is the total number of two-atom cells in the CNT, Substituting the wave functiofL6) into the Schrédinger

(A (B) ; ;

.~ andy,~ arem-orbital wave functions for the two carbon g ation with the potential energ9) we obtain a system of
a_ltomsA andB, respectivelyt is the_number along the helical equations for the coefficients, entering Eq(16),
line for an elementary cell consisting of these two atdsee

Fig. 1), and h(ky) =1+exfd-iksa) +expiinksa). The value of [&j(ks + 27v/lo) — ee(ky)Iby,,
the potential energyJ in the external electric field at the 2 N-1

position of a particular atom of the CNT depends on the n (ke + 27N UL (ke + 277" 1 DB = O
angle between the electric field vector and the vector normal 2 2 (ks + 2w o|Ulh(k + 21, '

o =
to the nanotube axis which passes through this atom. As a o
consequence, the coordinate of atarim cell numbert along 1
the helical line is wherer=0,1,2,...N-1, the index takes the value 1 or 2
lo for the valence and conduction bands, respectively, and
s=at+ 2—¢. (12)  eg(kJ) is the electron energy in the presence of the transverse
7 electric field.
The angle¢ is defined in such a way thd cog ¢+ m(n Let us consider the statés=-=/l, and 7/l in the same

+1)/(n?+n+1)] is the coordinate in the direction of the elec- CNT energy band, which_ are at the bogndaries of a Brillouin
tric field (with zero at the CNT axisof atom B in the cell ~ Zone created by the periodic superlattice poter{@alof the
with t=0. Using Egs(11) and(12), we can write the matrix €xternal field. One should expect the appearence of energy

element of the potential enerd9) as gaps at these values kf due to Bragg reflection of electron
waves from the superlattice potential. These states are sepa-
(Uh(k)IU (k) = Vﬁ5cos(ksa—k'a+2ﬂano),1 rated by 2r/1, and have the same energy, which means that
° they are strongly mixed by the electric field. For these values
+Vﬁ5cos(ksa—k;a—2wallo),1’ (13 of ks it can be shown that the contributions to the sum in Eq.

(16) from all other states can be neglected for sufficiently
weak fields E< y,a/(eR). As a result, the system of equa-

eE h(K)h* (k) a(n+1) tions (17) is reduced to just two equations, from which the
Vi = =2 |1 +(28;-1) Ih(Oh(ko) exp| i P 1) energy of Bragg band splittinds is found to be

xexpltid), (14 Ae = 2|(y(- o) |Ulgy(all)| ~ eER  (18)

and s, is the Kronecker delta. In the derivation of E¢®3) Thus, even a small electric field results irj a superlattipe-like

and(14) we have also assumed that the external electric fiel§hange of the electron energy spectrunrinl) CNTs, with

E is much less than the atomic field, i.e., the appearance of Bragg energy gaps proportional to the field
amplitudeE and the nanotube radil& Notably, this depen-

Y0 dence of the Bragg gaps on the external field and radius

ea’ (15) applies to any helical quasi-one-dimensional nanostructure in
a transverse electric field: this generic feature arises from the

This allows us to neglect any change in the atomic wavesymmetry of the nanostructure, and is independent of the

functions EA) and iB) due to the fieldE, and we take into parameters of the tight-binding model used to derive Eq.

account only the mixing of staté$1) by the field. According  (18). For example, it should be possible to observe a similar

to Eqg. (13), the field mixes only electron stat€&l) with effect in recently fabricated InGaAs/GaAs and Si/SiGe

wave vectors differing by 2/1,. In this approximation, the semiconductor nanohelicés.

exact wave function in the presence of the electric field, It should be emphasized that for single-wall carbon nano-

Ue(ks), can be expressed as a superposition of wave funaubes the discussed superlattice behavior is a unique feature

tions (11) with kg shifted by integer numbers of|: of (n, 1) structures only. For the general case dhan) CNT

where

E<
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with m# 1, the energy spectru) depends on the quantum 3

numberl in addition toks. As already mentioned represents

the projection of the electron angular momentum on the

nanotube axis, and it follows from the corresponding selec- 2

tion rule that the transverse electric field only mixes electron

states with angular momentuhandl+1. For m# 1, how-

ever, states with differing by one correspond to different 14

subbands, and in general have different energies kfor

=x1/ly, so that there is no Bragg scattering between these

states. The only effect of the electric field, therefore, is to <=0

mix electron states with different energies, which does not w

lead to noticeable modification of the dispersion curves for

weak electric fields. -1
For the particular case of @,1) CNT the energy spec-

trum can be obtained in analytic form for any electron state,

since the system of equatiofis7) consists of four equations 2

only. This system results in a biquadratic equation for the

eigenvaluesg(ky),

34 : : :
et (ko) = 2 (K (WF + W3 + 201 + 20,) + (v = 01 +WiW,)? = 0, i J I y T
-1 0 1
(19
ka/mn
where w;=1y[1+2 cogka)], W,=vy[1-2cogka)], vy $
=[Vcodp+m/3P, v=[V3Vsin(¢+m/3)F, and V FIG. 3. Electron energy spectrum of B 1) CNT in the presence

= .
=y3eEa (4m). The energy spectrunag(ks) obtained from  of a transverse electric fielB=yy/(ea..) with $=0 (solid lineg
Eqg. (19 is shown in Fig. 3solid lineg for a range of wave and without the electric fielddashed lines The inner pair of ver-
vectors -w/a<ks=< mr/a. In the figure, positive energies cor- tical dotted lines indicates the first Brillouin zone boundary in the
respond to the conduction band and negative energies to thpeesence of the field, whereas the outer pair corresponds to the first
valence band. The energy spectrum in the absence of tHillouin zone boundary without the field\e is the Bragg gap
field is shown for comparisofdashed lines According to  opened by the electric field.
Eq. (10), the superlattice periogd for a(1,1) CNT is equal to
twice the lattice constarat. Therefore, as can be seen in Fig.
3, the width of the first Brillouin zone in the presence of a
transverse electric field is half that without the field. It can

able in experiments, and may take place in existing CNT
field-effect device$.The inherent regularity of a nanotube-
A, . -~ hased superlattice, with the superlattice period determined by
a_Iso be seen that the electric field opens gaps in the d'Spetrﬁe CNT radius, presents a distinct advantage over semicon-
sion curve aks=+/(2a) due to the aforementioned Bragg ductor superlattices, in which monolayer fluctuations are un-

reflection of electron waves. For electric fields satisfying,yoidable. A whole range of new nanoelectronic devices

condition(15), we obtain from Eq(19) the Bragg gap based on the discussed superlattice properti¢n,df CNTs
J3eE can be envisaged, including Bloch oscillatbamd quantum
Ae = > a}cos(¢+ ml3)|. (20) cascade lasefsAn evaluation of the feasibility of these de-
v

vices and selection of their optimal parameters will undoubt-

The result in Eq(20) can also be obtained from the more €dly form the subject of extensive future research.
general formulg18). It should be noted that the Bragg gap, IV. CONCLUSIONS
as well as the whole energy spectrum of the CNT in a trans-

verse electric field, depends on the orientation of the CNT _In this paper we have discussed a previously overlooked
relative to the fieldi.e., on the angle of rotatiog). In par-  ¢lass of CNTs, which may be termed ‘helical’ nanotubes.

ticular, when ¢=7/6 the Bragg gap20) is zero: for this While we have concentrated on the superlattice behavior of
angle ’the values of the electric field potential at atgrend such nanotubes in a transverse electric field, we also expect

Bin a (1,D) CNT are equal in magnitude but opposite n sign, 21 (T8 R e ot o oton
and so the mean value of the potential within one elementar ' P ' P

cell of the CNT is zero. teractions. In addition, we have shown that superlattice be-

In the general case of@, 1) nanotube, for external elec havior in a transverse electric field is a generic feature of
9 ' ' helical quasi-one-dimensional nanostructures, which raises

tric field intensities attainable in experimentE  nq possibilities for developing optoelectronic devices oper-

the value of the Bragg gap given §¥8) is As~1072 eV,

which is comparable to the characteristic energy of band ACKNOWLEDGMENTS
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