3,281 research outputs found

    300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach

    Get PDF
    Tropospheric Ozone (O3) is both an air pollutant and a greenhouse gas. Predicting changes to O3 is therefore important for both air quality and near-term climate forcing. It is computationally expensive to predict changes in tropospheric O3 from every possible future scenario in composition climate models like those used in the 6th Coupled Model Intercomparison Project (CMIP6). Here we apply the different emission pathways used in CMIP6 with a model based on source-receptor relationships for tropospheric O3 to predict historical and future changes in O3 and its radiative forcing over a 300 year period (1750–2050). Changes in regional precursor emissions (nitrogen oxides, carbon monoxide and volatile organic compounds) and global methane abundance are used to quantify the impact on tropospheric O3 globally and across 16 regions, neglecting any impact from changes in climate. We predict large increases in global surface O3 (+8 ppbv) and O3 radiative forcing (+0.3 W m−2) over the industrial period. Nine different Shared Socio-economic Pathways are used to assess future changes in O3. Scenarios involving weak air pollutant controls and climate mitigation are inadequate in limiting the future degradation of surface O3 air quality and enhancement of near-term climate warming over all regions. Middle-of-the-road and strong mitigation scenarios reduce both surface O3 concentrations and O3 radiative forcing by up to 5 ppbv and 0.17 W m−2 globally, providing benefits to future air quality and near-term climate forcing. Sensitivity experiments show that targeting mitigation measures towards reducing global methane abundances could yield additional benefits for both surface O3 air quality and near-term climate forcing. The parameterisation provides a valuable tool for rapidly assessing a large range of future emission pathways that involve differing degrees of air pollutant and climate mitigation. The calculated range of possible responses in tropospheric O3 from these scenarios can be used to inform other modelling studies in CMIP6

    The incidence of postoperative venous thrombosis among patients with ulcerative colitis

    Get PDF
    Background: Patients with Ulcerative Colitis (UC) have inherent prothrombotic tendencies. It is unknown whether this necessitates the use of additional perioperative anti-thrombotic prophylaxis when such patients require major surgery. Methods: The postoperative courses of 79 patients with UC undergoing 180 major abdominal and pelvic operations were examined for clinical and radiological evidence of venous thrombosis. Eighteen patients with Familial Adenomatous Polyposis (FAP) having surgery (35 operations) of similar magnitude were also studied. Standard anti-thrombosis prophylaxis was utilised in all patients. Results: Nine patients with UC were clinically suspected of developing postoperative venous thrombosis, but only three (3.8%) had their diagnosis confirmed radiologically (all had a pulmonary embolus). Therefore, the overall postoperative thrombosis rate, on an intention to treat basis, was 1.7% (3/180). No patient with FAP developed significant venous thrombosis. Conclusion: Standard perioperative antithrombotic modalities are sufficient to maintain any potential increase in postoperative thrombotic risk at an acceptable level in patients with UC undergoing operative intervention

    THE ROLE OF ANXIETY IN GOLF PUTTING PERFORMANCE

    Get PDF
    Anxiety’s influence on performance continues to be one of the main research interests for sport psychologists (Hanin, 2000). It is apparent, though, that there is a lack of empirical research characterising the multi-disciplinary effect of anxiety on sports performance. The current study aimed to ascertain biomechanical (accuracy, movement variability) and psychological (anxiety) markers to determine how anxiety affects golf putting

    Parental Influences on Children's Self-Regulation of Energy Intake: Insights from Developmental Literature on Emotion Regulation

    Get PDF
    The following article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to children's behavior, assistance in helping children self-regulate, and motivating children through rewards and punishments. Additionally, sources of variation in parental influences on regulation are examined, including parenting style, child temperament, and child-parent attachment security. Parallels in the nature of parents' role in socializing children's regulation of emotions and energy intake are examined. Implications for future research are discussed

    Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo

    Get PDF
    In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Nino warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C)/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH4)/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important

    Higher Order Correlations in Quantum Chaotic Spectra

    Full text link
    The statistical properties of the quantum chaotic spectra have been studied, so far, only up to the second order correlation effects. The numerical as well as the analytical evidence that random matrix theory can successfully model the spectral fluctuatations of these systems is available only up to this order. For a complete understanding of spectral properties it is highly desirable to study the higher order spectral correlations. This will also inform us about the limitations of random matrix theory in modelling the properties of quantum chaotic systems. Our main purpose in this paper is to carry out this study by a semiclassical calculation for the quantum maps; however results are also valid for time-independent systems.Comment: Revtex, Four figures (Postscript files), Phys. Rev E (in press

    Relaxation and Localization in Interacting Quantum Maps

    Full text link
    We quantise and study several versions of finite multibaker maps. Classically these are exactly solvable K-systems with known exponential decay to global equilibrium. This is an attempt to construct simple models of relaxation in quantum systems. The effect of symmetries and localization on quantum transport is discussed.Comment: 32 pages. LaTex file. 9 figures, not included. For figures send mail to first author at '[email protected]

    Heat conduction in the disordered harmonic chain revisited

    Get PDF
    A general formulation is developed to study heat conduction in disordered harmonic chains with arbitrary heat baths that satisfy the fluctuation-dissipation theorem. A simple formal expression for the heat current J is obtained, from which its asymptotic system-size (N) dependence is extracted. It is shown that the ``thermal conductivity'' depends not just on the system itself but also on the spectral properties of the fluctuation and noise used to model the heat baths. As special cases of our heat baths we recover earlier results which reported that for fixed boundaries J1/N3/2J \sim 1/N^{3/2}, while for free boundaries J1/N1/2J \sim 1/N^{1/2}. For other choices we find that one can get other power laws including the ``Fourier behaviour'' J1/NJ \sim 1/N.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring

    Full text link
    Photodetachment thermometry on a beam of OH^- in a cryogenic storage ring cooled to below 10 K is carried out using two-dimensional, frequency and time dependent photodetachment spectroscopy over 20 minutes of ion storage. In equilibrium with the low-level blackbody field, we find an effective radiative temperature near 15 K with about 90% of all ions in the rotational ground state. We measure the J = 1 natural lifetime (about 193 s) and determine the OH^- rotational transition dipole moment with 1.5% uncertainty. We also measure rotationally dependent relative near-threshold photodetachment cross sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX supplement with 12 pages, 3 figures and 3 tables. This article has been accepted by Physical Review Letter

    Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics

    Get PDF
    The aim of this study was to evaluate the effectiveness of mid-infrared spectroscopy in predicting milk protein and free amino acid (FAA) composition in bovine milk. Milk samples were collected from 7 Irish research herds and represented cows from a range of breeds, parities, and stages of lactation. Mid-infrared spectral data in the range of 900 to 5,000 cm(-1) were available for 730 milk samples; gold standard methods were used to quantify individual protein fractions and FAA of these samples with a view to predicting these gold standard protein fractions and FAA levels with available mid-infrared spectroscopy data. Separate prediction equations were developed for each trait using partial least squares regression; accuracy of prediction was assessed using both cross validation on a calibration data set (n = 400 to 591 samples) and external validation on an independent data set (n = 143 to 294 samples). The accuracy of prediction in external validation was the same irrespective of whether undertaken on the entire external validation data set or just within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total beta-lactoglobulin, and beta-casein, respectively. Total proteins (i.e., total casein, total whey, and total lactoglobulin) were predicted with greater accuracy then their respective component traits; prediction accuracy using the infrared spectrum was superior to prediction using just milk protein concentration. Weak to moderate prediction accuracies were observed for FAA. The greatest coefficient of correlation in both cross validation and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. Overall, the FAA prediction models overpredicted the gold standard values. Near-unity correlations existed between total casein and beta-casein irrespective of whether the traits were based on the gold standard (0.92) or mid-infrared spectroscopy predictions (0.95). Weaker correlations among FAA were observed than the correlations among the protein fractions. Pearson correlations between gold standard protein fractions and the milk processing characteristics of rennet coagulation time, curd firming time, curd firmness, heat coagulating time, pH, and casein micelle size were weak to moderate and ranged from -0.48 (protein and pH) to 0.50 (total casein and a(30)). Pearson correlations between gold standard FAA and these milk processing characteristics were also weak to moderate and ranged from -0.60 (Val and pH) to 0.49 (Val and K-20). Results from this study indicate that mid-infrared spectroscopy has the potential to predict protein fractions and some FAA in milk at a population level
    corecore