95 research outputs found

    La périnatalité au Québec : Une série d’études significatives à plusieurs égards

    Get PDF
    Dans un premier temps, cet article présente brièvement le contexte historique des services périnatals au Québec, en particulier depuis les années 1970 où ce contexte s'est assez profondément modifié. Il passe ensuite en revue les cinq études qui composent la série La périnatalité au Québec et se termine par quelques constats d'ensemble sur ces ouvrages quant à leur valeur intrinsèque et à leur signification dans l'histoire des services périnatals québécois

    Telehealth Delivery of a Multi-Disciplinary Rehabilitation Programme for Upper Gastro-Intestinal Cancer: ReStOre@Home Feasibility Study

    Get PDF
    Advances in diagnosis and the treatment for upper gastro-intestinal (UGI) cancers have led to improved survival rates and, consequently, to a larger population of survivors of many types of UGI cancer [1,2]. Progress in survivorship care for UGI cancer remains poor, and many survivors experience ongoing negative physical and psychosocial impacts of treatment, which can have profound and long-term impacts on physical function and quality of life (QOL) [3,4]. At one year post-op, 40% of survivors report poor physical function, and significant reductions in walking distance, cardiorespiratory fitness and muscle strength are observed, along with a high prevalence of fatigue (41%), sarcopenia (35%) and dyspnoea (20%) [5–7]. Nutritional compromise in UGI cancer survivors is frequently reported, with eating restrictions are observed in 49% at 1 year post-surgery and malabsorption in 73% at two years post-op [6,8]. This can lead to significant reductions in fat-free body mass and skeletal muscle [8]. From a psychosocial perspective, anxiety (36%), fear of recurrence (29%) and high rates of sleep difficulties (51%) are reported. An integrated, multi-disciplinary specialist rehabilitation approach focusing on patient-centred outcomes is indicated to address the substantial, complex, multi-dimensional rehabilitation needs of UGI cancer survivors and to enable them to achieve the best possible quality of life and to reintegrate into family, social and working life [9–12]

    The Pattern of AQP4 Expression in the Ageing Human Brain and in Cerebral Amyloid Angiopathy

    Get PDF
    In the absence of lymphatics, fluid and solutes such as amyloid-β (Aβ) are eliminated from the brain along basement membranes in the walls of cerebral capillaries and arteries-the Intramural Peri-Arterial Drainage (IPAD) pathway. IPAD fails with age and insoluble Aβ is deposited as plaques in the brain and in IPAD pathways as cerebral amyloid angiopathy (CAA); fluid accumulates in the white matter as reflected by hyperintensities (WMH) on MRI. Within the brain, fluid uptake by astrocytes is regulated by aquaporin 4 (AQP4). We test the hypothesis that expression of astrocytic AQP4 increases in grey matter and decreases in white matter with onset of CAA. AQP4 expression was quantitated by immunocytochemistry and confocal microscopy in post-mortem occipital grey and white matter from young and old non-demented human brains, in CAA and in WMH. Results: AQP4 expression tended to increase with normal ageing but AQP4 expression in severe CAA was significantly reduced when compared to moderate CAA (p = 0.018). AQP4 expression tended to decline in the white matter with CAA and WMH, both of which are associated with impaired IPAD. Adjusting the level of AQP4 activity may be a valid therapeutic target for restoring homoeostasis in the brain as IPAD fails with age and CAA.</p

    RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2

    Get PDF
    Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. ​BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting ​RAD51 nucleofilament formation at stalled replication forks. ​CDK2 phosphorylates ​BRCA2 (pS3291-​BRCA2) to limit stabilizing contacts with polymerized ​RAD51; however, how replication stress modulates ​CDK2 activity and whether loss of pS3291-​BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase ​LATS1 interacts with ​CDK2 in response to genotoxic stress to constrain pS3291-​BRCA2 and support ​RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that ​LATS1 forms part of an ​ATR-mediated response to replication stress that requires the tumour suppressor ​RASSF1A. Importantly, perturbation of the ​ATR–​RASSF1A–​LATS1 signalling axis leads to genomic defects associated with loss of ​BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers

    Daily magnesium fluxes regulate cellular timekeeping and energy balance

    Get PDF
    Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes1, 2, 3. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology4, 5. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg2+]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago6. Given the essential role of Mg2+ as a cofactor for ATP, a functional consequence of [Mg2+]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg2+ availability has potential to impact upon many of the cell’s more than 600 MgATP-dependent enzymes7 and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR8 is regulated through [Mg2+]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease

    Non-essential role for TLR2 and its signaling adaptor Mal/TIRAP in preserving normal lung architecture in mice

    Get PDF
    Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr42/2 mice by 6 months of age, the lungs of Tlr22/2 mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr42/2 mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal2/2 mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal2/2 mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr42/2 mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema

    Connectivity guided theta burst transcranial magnetic stimulation versus repetitive transcranial magnetic stimulation for treatment-resistant moderate to severe depression: study protocol for a randomised double-blind controlled trial (BRIGhTMIND)

    Get PDF
    Introduction The BRIGhTMIND study aims to determine the clinical effectiveness, cost effectiveness and mechanism of action of connectivity guided intermittent Theta Burst Stimulation (cgiTBS) versus standard repetitive Transcranial Magnetic Stimulation (rTMS) in adults with moderate to severe treatment resistant depression. Methods and analysis The study is a randomised double-blind controlled trial with 1:1 allocation to either 20 sessions of (a) cgiTBS or (b) neuronavigated rTMS not using connectivity guidance. A total of 368 eligible participants with a diagnosis of current unipolar major depressive disorder that is both treatment resistant (defined as scoring 2 or more on the Massachusetts General Hospital (MGH) Staging Score) and moderate to severe (scoring >16 on the 17-item Hamilton Depression Rating Scale (HDRS-17)), will be recruited from primary and secondary care settings at four treatment centres in the United Kingdom. The primary outcome is depression response at 16 weeks (50% or greater reduction in HDRS-17 score from baseline). Secondary outcomes include assessments of self-rated depression, anxiety, psychosocial functioning, cognition and quality of life at 8, 16 and 26 weeks post randomisation. Cost effectiveness, patient acceptability, safety, mechanism of action and predictors of response will also be examined

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al
    • …
    corecore