7 research outputs found

    Outcomes of Patients Presenting with Mild Acute Respiratory Distress Syndrome: Insights from the LUNG SAFE Study

    No full text
    WHAT WE ALREADY KNOW ABOUT THIS TOPIC: Hospital mortality in acute respiratory distress syndrome is approximately 40%, but mortality and trajectory in "mild" acute respiratory distress syndrome (classified only since 2012) are unknown, and many cases are not detected WHAT THIS ARTICLE TELLS US THAT IS NEW: Approximately 80% of cases of mild acute respiratory distress syndrome persist or worsen in the first week; in all cases, the mortality is substantial (30%) and is higher (37%) in those in whom the acute respiratory distress syndrome progresses BACKGROUND:: Patients with initial mild acute respiratory distress syndrome are often underrecognized and mistakenly considered to have low disease severity and favorable outcomes. They represent a relatively poorly characterized population that was only classified as having acute respiratory distress syndrome in the most recent definition. Our primary objective was to describe the natural course and the factors associated with worsening and mortality in this population. METHODS: This study analyzed patients from the international prospective Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) who had initial mild acute respiratory distress syndrome in the first day of inclusion. This study defined three groups based on the evolution of severity in the first week: "worsening" if moderate or severe acute respiratory distress syndrome criteria were met, "persisting" if mild acute respiratory distress syndrome criteria were the most severe category, and "improving" if patients did not fulfill acute respiratory distress syndrome criteria any more from day 2. RESULTS: Among 580 patients with initial mild acute respiratory distress syndrome, 18% (103 of 580) continuously improved, 36% (210 of 580) had persisting mild acute respiratory distress syndrome, and 46% (267 of 580) worsened in the first week after acute respiratory distress syndrome onset. Global in-hospital mortality was 30% (172 of 576; specifically 10% [10 of 101], 30% [63 of 210], and 37% [99 of 265] for patients with improving, persisting, and worsening acute respiratory distress syndrome, respectively), and the median (interquartile range) duration of mechanical ventilation was 7 (4, 14) days (specifically 3 [2, 5], 7 [4, 14], and 11 [6, 18] days for patients with improving, persisting, and worsening acute respiratory distress syndrome, respectively). Admissions for trauma or pneumonia, higher nonpulmonary sequential organ failure assessment score, lower partial pressure of alveolar oxygen/fraction of inspired oxygen, and higher peak inspiratory pressure were independently associated with worsening. CONCLUSIONS: Most patients with initial mild acute respiratory distress syndrome continue to fulfill acute respiratory distress syndrome criteria in the first week, and nearly half worsen in severity. Their mortality is high, particularly in patients with worsening acute respiratory distress syndrome, emphasizing the need for close attention to this patient population

    Correction to: Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study (Intensive Care Medicine, (2016), 42, 12, (1865-1876), 10.1007/s00134-016-4571-5)

    No full text
    The members of the LUNG SAFE Investigators and the ESICM Trials Group were provided in such a way that they could not be indexed as collaborators on PubMed. The publisher apologizes for this error

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    Background: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH2O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH2O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH2O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073

    Resolved versus confirmed ARDS after 24 h: insights from the LUNG SAFE study

    No full text
    Purpose: To evaluate patients with resolved versus confirmed ARDS, identify subgroups with substantial mortality risk, and to determine the utility of day 2 ARDS reclassification. Methods: Our primary objective, in this secondary LUNG SAFE analysis, was to compare outcome in patients with resolved versus confirmed ARDS after 24 h. Secondary objectives included identifying factors associated with ARDS persistence and mortality, and the utility of day 2 ARDS reclassification. Results: Of 2377 patients fulfilling the ARDS definition on the first day of ARDS (day 1) and receiving invasive mechanical ventilation, 503 (24%) no longer fulfilled the ARDS definition the next day, 52% of whom initially had moderate or severe ARDS. Higher tidal volume on day 1 of ARDS was associated with confirmed ARDS [OR 1.07 (CI 1.01–1.13), P = 0.035]. Hospital mortality was 38% overall, ranging from 31% in resolved ARDS to 41% in confirmed ARDS, and 57% in confirmed severe ARDS at day 2. In both resolved and confirmed ARDS, age, non-respiratory SOFA score, lower PEEP and P/F ratio, higher peak pressure and respiratory rate were each associated with mortality. In confirmed ARDS, pH and the presence of immunosuppression or neoplasm were also associated with mortality. The increase in area under the receiver operating curve for ARDS reclassification on day 2 was marginal. Conclusions: ARDS, whether resolved or confirmed at day 2, has a high mortality rate. ARDS reclassification at day 2 has limited predictive value for mortality. The substantial mortality risk in severe confirmed ARDS suggests that complex interventions might best be tested in this population. Trial Registration: ClinicalTrials.gov NCT02010073

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    Get PDF
    Abstract Background Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59–78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57–77] vs 74 [64–80] years, p &lt; 0.001) and had lower driving (12 [8–16] vs 15 [11–17] cmH2O, p &lt; 0.001), plateau (20 [15–23] vs 22 [19–26] cmH2O, p &lt; 0.001) and peak (21 [17–27] vs 26 [20–32] cmH2O, p &lt; 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60–1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16–2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06–1.18], p &lt; 0.001) and tidal volume after day 7 (HR 0.69 [0.52–0.93], p = 0.015) were related to survival. Conclusions Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073 </jats:sec

    Correction to: Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study (Intensive Care Medicine, (2016), 42, 12, (1865-1876), 10.1007/s00134-016-4571-5)

    No full text
    Correction to: Intensive Care Med (2016) 42:1865-1876 DOI 10.1007/s00134-016-4571-5

    Correction to: Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study (Intensive Care Medicine, (2016), 42, 12, (1865-1876), 10.1007/s00134-016-4571-5)

    No full text
    The members of the LUNG SAFE Investigators and the ESICM Trials Group were provided in such a way that they could not be indexed as collaborators on PubMed. The publisher apologizes for this error
    corecore