14 research outputs found

    Ecological countermeasures to prevent pathogen spillover and subsequent pandemics

    Get PDF
    Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Biological Earth observation with animal sensors

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change

    Principal component 1 vs 2 of Procrustes scaled coordinates in the geometric morphometric analysis.

    No full text
    <p>The first two principal components account for a cumulative 51.1% and 68.1% of the variation, respectively.</p

    Summary statistics for noctule wing parameters.

    No full text
    <p>Mean (± sd) for sex differences in wing shape and size variables collected from wing photos of 135 common noctules (94 female, 41 male).</p

    Wing morphology of <i>Nyctalus noctula</i>.

    No full text
    <p>A) Right wing of <i>N</i>. <i>noctula</i> with 13 landmarks that were used to calculate individual bone lengths. The blue line represents the forearm length, the metacarpals are shown in orange, the proximal phalanges in yellow, the medial phalanx of digit 3 in cyan, and the distal phalanges are in green. B) Right wing of <i>Nyctalus noctula</i> showing the calculation of areas, and linear distances.</p

    Ecological countermeasures to prevent pathogen spillover and subsequent pandemics

    No full text
    Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.ISSN:2041-172
    corecore