1,703 research outputs found

    Cerebral Blood Velocity Increases during Face Cooling in Symptomatic Concussed Athletes

    Get PDF
    Click the PDF icon to download the abstract

    Proposal for generalised Supersymmetry Les Houches Accord for see-saw models and PDG numbering scheme

    Get PDF
    The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles.Comment: 44 pages. Changed titl

    SUSY parameter determination at the LHC using cross sections and kinematic edges

    Full text link
    We study the determination of supersymmetric parameters at the LHC from a global fit including cross sections and edges of kinematic distributions. For illustration, we focus on a minimal supergravity scenario and discuss how well it can be constrained at the LHC operating at 7 and 14 TeV collision energy, respectively. We find that the inclusion of cross sections greatly improves the accuracy of the SUSY parameter determination, and allows to reliably extract model parameters even in the initial phase of LHC data taking with 7 TeV collision energy and 1/fb integrated luminosity. Moreover, cross section information may be essential to study more general scenarios, such as those with non-universal gaugino masses, and distinguish them from minimal, universal, models.Comment: 22 pages, 8 figure

    The Physics of Heavy Flavours at SuperB

    Full text link
    This is a review of the SuperB project, covering the accelerator, detector, and highlights of the broad physics programme. SuperB is a flavour factory capable of performing precision measurements and searches for rare and forbidden decays of Bu,d,sB_{u,d,s}, DD, τ\tau and Υ(nS)\Upsilon({\mathrm{nS}}) particles. These results can be used to test fundamental symmetries and expectations of the Standard Model, and to constrain many different hypothesised types of new physics. In some cases these measurements can be used to place constraints on the existence of light dark matter and light Higgs particles with masses below 10GeV/c210GeV/c^2. The potential impact of the measurements that will be made by SuperB on the field of high energy physics is also discussed in the context of data taken at both high energy in the region around the \Upsilon({\mathrm{4S}})$, and near charm threshold.Comment: 49 pages, topical review submitted to J. Phys

    Dark matter scenarios in the minimal SUSY B-L model

    Full text link
    We perform a study of the dark matter candidates of a constrained version of the minimal R-parity-conserving supersymmetric model with a gauged U(1)BLU(1)_{B-L}. It turns out that there are four additional candidates for dark matter in comparison to the MSSM: two kinds of neutralino, which either correspond to the gaugino of the U(1)BLU(1)_{B-L} or to a fermionic bilepton, as well as "right-handed" CP-even and -odd sneutrinos. The correct dark matter relic density of the neutralinos can be obtained due to different mechanisms including new co-annihilation regions and resonances. The large additional Yukawa couplings required to break the U(1)BLU(1)_{B-L} radiatively often lead to large annihilation cross sections for the sneutrinos. The correct treatment of gauge kinetic mixing is crucial to the success of some scenarios. All candidates are consistent with the exclusion limits of Xenon100.Comment: 45 pages, 22 figures; v2: extended discussion of direct detection cross section, matches published versio

    Quadratic fermionic interactions yield effective Hamiltonians for adiabatic quantum computing

    Full text link
    Polynomially-large ground-state energy gaps are rare in many-body quantum systems, but useful for adiabatic quantum computing. We show analytically that the gap is generically polynomially-large for quadratic fermionic Hamiltonians. We then prove that adiabatic quantum computing can realize the ground states of Hamiltonians with certain random interactions, as well as the ground states of one, two, and three-dimensional fermionic interaction lattices, in polynomial time. Finally, we use the Jordan-Wigner transformation and a related transformation for spin-3/2 particles to show that our results can be restated using spin operators in a surprisingly simple manner. A direct consequence is that the one-dimensional cluster state can be found in polynomial time using adiabatic quantum computing.Comment: 14 page

    Partial Anomalous Pulmonary Venous Connection: Diagnosis by Transesophageal Echocardiography

    Get PDF
    AbstractObjectives. This study sought to demonstrate that with proper technique, identification of the normal and abnormal pulmonary venous connection can be made with confidence using transesophageal echocardiography (TEE).Background. Partial anomalous pulmonary venous connection (PAPVC) is an uncommon congenital anomaly whose diagnosis has classically been made using angiography.Methods. We performed a retrospective review of all patients of all ages with PAPVC diagnosed at the Mayo Clinic who had undergone TEE because of either right ventricular volume overload or suspected intracardiac shunting by transthoracic echocardiography or intraoperatively.Results. A total of 66 PAPVCs were detected in 43 patients (1.5/patient); in 2 additional patients, TEE suggested, but did not diagnose, PAPVCs. Shortness of breath was the most common presenting symptom (42.2%), followed by heart murmur and supraventricular tachycardia. Right-sided anomalous veins were identified in 35 patients (81.4%), left-sided in 7 (16.3%) and bilateral in 1 (2.3%). There was a single anomalous connecting vein in 23 patients (53.5%), two in 18 (41.9%), three in 1 (2.3%) and four in 1 (2.3%). The connecting site was the superior vena cava (SVC) in 39 veins (59.1%), right atrial–SVC junction in 6 (9.1%), right atrium in 8 (12.1%), inferior vena cava in 1 (1.5%) and the coronary sinus in 2 (3.0%). Ten anomalous left pulmonary veins were connected by a vertical vein to the innominate vein (15.1%). Sinus venosus atrial septal defect (ASD) was the most common associated anomaly in 22 patients (49%), followed by ostium secundum ASD in 6 and patent foramen ovale in 4. Fifteen patients had an intact atrial septum. Thirty-one patients (68.8%) underwent surgical repair. PAPVC was confirmed in all patients, including the two whose TEE results were suggestive of PAPVC. All 49 PAPVCs detected by TEE preoperatively were confirmed at the time of operation.Conclusions. TEE is highly diagnostic for PAPVC and can obviate angiography. Accurate anatomic diagnosis may influence the need for medical and surgical management. TEE should be performed in patients with right ventricular volume overload when the precordial examination is inconclusive.(J Am Coll Cardiol 1997;29:1351–8

    The generalised NMSSM at one loop: fine tuning and phenomenology

    Full text link
    We determine the degree of fine tuning needed in a generalised version of the NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is significantly less than is found in the MSSM or NMSSM and extends the range of Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV. For universal boundary conditions analogous to the CMSSM the phenomenology is rather MSSM like with the singlet states typically rather heavy. For more general boundary conditions the singlet states can be light, leading to interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film
    corecore