98 research outputs found

    Prospects for extending the core-collapse supernova detection horizon using high-energy neutrinos

    Full text link
    Large neutrino detectors like IceCube monitor for core-collapse supernovae using low energy (MeV) neutrinos, with a reach to a supernova neutrino burst to the Magellanic Cloud. However, some models predict the emission of high energy neutrinos (GeV-TeV) from core-collapse supernovae through the interaction of ejecta with circumstellar material and (TeV-PeV) through choked jets. In this paper, we explore the detection horizon of IceCube for core-collapse supernovae using high-energy neutrinos from these models. We examine the potential of two high-energy neutrino data samples from IceCube, one that performs best in the northern sky and one that has better sensitivity in the southern sky. We demonstrate that by using high-energy neutrinos from core-collapse supernovae, the detection reach can be extended to the Mpc range, far beyond what is accessible through low-energy neutrinos. Looking ahead to IceCube-Gen2, this reach will be extended considerably.Comment: 9 pages, 2 figures. Accepted for publication in Ap

    Snowmass 2021 topical group report: Neutrinos from Natural Sources

    Full text link
    This is the final report from the Snowmass 2021 Neutrino Frontier Topical Group on Neutrinos from Natural Sources. It covers a broad range of neutrino sources, from low-energy neutrinos from the early universe to ultra high-energy sources. We divide this report by source, and discuss the motivations for pursuing searches in each case, the current state of the field, and the prospects for future theoretical and experimental developments. We consider neutrinos produced in the early universe; solar neutrinos; geoneutrinos; supernova neutrinos, including the diffuse supernova neutrino background (DSNB); neutrinos produced in the atmosphere; and high-energy astrophysical neutrinos.Comment: Topical Group Report for NF04 (Neutrino Frontier Topical Group on Neutrinos From Natural Sources) for Snowmass 2021, 42 page

    Extent and consistency of linkage disequilibrium and identification of DNA markers for production and egg quality traits in commercial layer chicken populations

    Get PDF
    A 3,072 single nucleotide polymorphism (SNP) panel was used to identify genetic markers linked to quantitative trait loci (QTL). Two association methods were used to search for QTL, SNP-wise and genome-wise models. The QTL associated with SNPs, found using both of these methods, can be applied to breeding programs in marker assisted selection (MAS). The extent and consistency of linkage disequilibrium (LD) was measured in two lines of commercial egg laying chickens by analysis of SNPs. Correlations were drawn between measurements of two consecutive years to determine consistency. At short distances, LD is retained which allows for markers at high LD with a trait to be effectively applied in MAS

    Evaluation of a Longitudinal Institutional Advanced Pharmacy Practice Model

    Get PDF
      Objective: To evaluate a longitudinal experiential training model for advanced pharmacy practice experiences (APPEs). Innovation: A six-month longitudinal pilot program named the Focused Institutional Longitudinal Experience (FILE) program was developed at two academic medical centers to maximize active participation of the student and minimize the time spent orienting and onboarding students to each APPE experience.  A unique component of the FILE program is the longitudinal service project, which involved a medication use evaluation, including a review of published literature and drug policy recommendations to medical center quality committees. Analysis: Student ratings regarding the quality and value of the FILE student experience was compared to the traditional APPE model.  Nine quality measures were compared (e.g. amount of opportunity for direct patient care experience, learning, integration into healthcare team, and accountability for patient outcomes) between students from the FILE program to peers completing similar APPEs outside the FILE program. FILE students and APPE preceptors also completed surveys regarding the value of several program aspects. Key Findings: There was no difference between FILE and non-FILE student self-rated measures of APPE quality, and thus the decision to participate in a longitudinal APPE program should be based on the personal preference of the student.  Students in the FILE program agreed or strongly agreed (mean score 4.3) that they felt prepared for post-graduate training at the completion of the program. The potential value that students in a longitudinal program might bring to the site is reinforced by the general agreement by preceptors in the end of year survey  that FILE students take less of their time to orient to their service and the trend toward perception that FILE students are more likely to independently participate in patient care activities.  Next Steps: To address feedback on preceptor-mentor role and the desire for more interaction with pharmacy residents, students are now paired with a pharmacy resident, and the student and resident work together on the service project with a clinical pharmacist as an advisor.  Updated standards of practice clearly delineate the roles and responsibilities of students, residents, and the clinical pharmacist preceptor.  Annual surveys of FILE students and preceptors provide necessary feedback to continuously improve the quality of the program.     Article Type:  Not

    Assessment of a statistical AIF extraction method for dynamic PET studies with 15O water and 18F fluorodeoxyglucose in locally advanced breast cancer patients

    Get PDF
    Blood flow-metabolism mismatch from dynamic positron emission tomography (PET) studies with O-15-labeled water (H2O) and F-18-labeled fluorodeoxyglucose (FDG) has been shown to be a promising diagnostic for locally advanced breast cancer (LABCa) patients. The mismatch measurement involves kinetic analysis with the arterial blood time course (AIF) as an input function. We evaluate the use of a statistical method for AIF extraction (SAIF) in these studies. Fifty three LABCa patients had dynamic PET studies with H2O and FDG. For each PET study, two AIFs were recovered, an SAIF extraction and also a manual extraction based on a region of interest placed over the left ventricle (LV-ROI). Blood flow-metabolism mismatch was obtained with each AIF, and kinetic and prognostic reliability comparisons were made. Strong correlations were found between kinetic assessments produced by both AIFs. SAIF AIFs retained the full prognostic value, for pathologic response and overall survival, of LV-ROI AIFs. (c) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI

    Optical imaging and spectroscopy for the study of the human brain: status report.

    Get PDF
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions

    CONCEPTT: Continuous Glucose Monitoring in Women with Type 1 Diabetes in Pregnancy Trial: A multi-center, multi-national, randomized controlled trial - Study protocol.

    Get PDF
    BACKGROUND: Women with type 1 diabetes strive for optimal glycemic control before and during pregnancy to avoid adverse obstetric and perinatal outcomes. For most women, optimal glycemic control is challenging to achieve and maintain. The aim of this study is to determine whether the use of real-time continuous glucose monitoring (RT-CGM) will improve glycemic control in women with type 1 diabetes who are pregnant or planning pregnancy. METHODS/DESIGN: A multi-center, open label, randomized, controlled trial of women with type 1 diabetes who are either planning pregnancy with an HbA1c of 7.0 % to ≤10.0 % (53 to ≤ 86 mmol/mol) or are in early pregnancy (<13 weeks 6 days) with an HbA1c of 6.5 % to ≤10.0 % (48 to ≤ 86 mmol/mol). Participants will be randomized to either RT-CGM alongside conventional intermittent home glucose monitoring (HGM), or HGM alone. Eligible women will wear a CGM which does not display the glucose result for 6 days during the run-in phase. To be eligible for randomization, a minimum of 4 HGM measurements per day and a minimum of 96 hours total with 24 hours overnight (11 pm-7 am) of CGM glucose values are required. Those meeting these criteria are randomized to RT- CGM or HGM. A total of 324 women will be recruited (110 planning pregnancy, 214 pregnant). This takes into account 15 and 20 % attrition rates for the planning pregnancy and pregnant cohorts and will detect a clinically relevant 0.5 % difference between groups at 90 % power with 5 % significance. Randomization will stratify for type of insulin treatment (pump or multiple daily injections) and baseline HbA1c. Analyses will be performed according to intention to treat. The primary outcome is the change in glycemic control as measured by HbA1c from baseline to 24 weeks or conception in women planning pregnancy, and from baseline to 34 weeks gestation during pregnancy. Secondary outcomes include maternal hypoglycemia, CGM time in, above and below target (3.5-7.8 mmol/l), glucose variability measures, maternal and neonatal outcomes. DISCUSSION: This will be the first international multicenter randomized controlled trial to evaluate the impact of RT- CGM before and during pregnancy in women with type 1 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01788527 Registration Date: December 19, 2012

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29
    corecore