226 research outputs found

    Human Colon Carcinoma Cells Expressing CMVpp65 Antigen: An IN-VIVO Model for Adoptive Immunotherapy Of CMV Disease

    Get PDF

    The California coastal wave monitoring and prediction system

    Get PDF
    AbstractA decade-long effort to estimate nearshore (20m depth) wave conditions based on offshore buoy observations along the California coast is described. Offshore, deep water directional wave buoys are used to initialize a non-stationary, linear, spectral refraction wave model. Model hindcasts of spectral parameters commonly used in nearshore process studies and engineering design are validated against nearshore buoy observations seaward of the surfzone. The buoy-driven wave model shows significant skill at most validation sites, but prediction errors for individual swell or sea events can be large. Model skill is high in north San Diego County, and low in the Santa Barbara Channel and along the southern Monterey Bay coast. Overall, the buoy-driven model hindcasts have relatively low bias and therefore are best suited for quantifying mean (e.g. monthly or annual) nearshore wave climate conditions rather than extreme or individual wave events. Model error correlation with the incident offshore wave energy, and between neighboring validation sites, may be useful in identifying sources of regional modeling errors

    Exploiting topology-directed nanoparticle disassembly for triggered drug delivery

    Get PDF
    YesThe physical properties of cyclic and linear polymers are markedly different; however, there are few examples which exploit these differences in clinical applications. In this study, we demonstrate that self-assemblies comprised of cyclic-linear graft copolymers are significantly more stable than the equivalent linear-linear graft copolymer assemblies. This difference in stability can be exploited to allow for triggered disassembly by cleavage of just a single bond within the cyclic polymer backbone, via disulfide reduction, in the presence of intracellular levels of l-glutathione. This topological effect was exploited to demonstrate the first example of topology-controlled particle disassembly for the controlled release of an anti-cancer drug in vitro. This approach represents a markedly different strategy for controlled release from polymer nanoparticles and highlights for the first time that a change in polymer topology can be used as a trigger in the design of delivery vehicles. We propose such constructs, which demonstrate disassembly behavior upon a change in polymer topology, could find application in the targeted delivery of therapeutic agents.ERC are acknowledged for support to M.C.A., A.P.D. (grant number: 681559) and R.O.R. (grant number: 615142)

    Fabrication of crystals from single metal atoms

    Get PDF
    YesMetal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms.We thank the Leverhulme Trust (Early Career Fellowship No. ECF-2013-414 to NPEB), the University of Warwick (Grant No. RDF 2013-14 to NPEB), the Swiss National Science Foundation (Grant No. PA00P2_145308 to NPEB and PBNEP2_142949 to APB), the ERC (Grant No. 247450 to PJS), EPSRC (EP/G004897/1 to RKOR, and EP/F034210/1 to PJS) and Science City (AWM/ERDF) for support. We thank the Wellcome Trust (Grant No. 055663/Z/98/Z) for funding the Electron Microscopy Facility, School of Life Sciences, University of Warwick. We also thank COST Action CM1105 for stimulating discussions, Thomas Wilks for supplying the micelle image for Figure 1, and the Australian Synchrotron and the University of Monash for allocation of time on the SAXS/ WAXS beamline and funding. The 2000FX Gatan Orius digital TEM camera used in this research was funded by Science City: Creating and Characterizing Next Generation Advanced Materials, with support from Advantage West Midlands and part funded by the European Regional Development Fund

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.Peer reviewe
    corecore