4,387 research outputs found
Recommended from our members
Survival strategies of poor women in urban Africa: The case of Zambia
Urban poverty is increasing alongside growing urban populations in sub-Saharan Africa. Women constitute a significant proportion of the urban poor but their role is often neglected by development projects. Research was undertaken with the aim of providing better definition and targeting of project interventions. NRI became involved in this research because of the importance of natural resource-elated activities (food production, processing and trade) to poor women in urban areas. Women have developed survival strategies which include migration, marriage and fertility, education, links with rural areas, social networks, saving and borrowing, and home production through urban agriculture. Most women also engage directly in some form of income-earning activity. The scale of these activities varies widely but for the vast majority of poor women, it is some form of micro-enterprise, most often vending of foodstuffs. Poor women depend on purchased natural resources products for family food and fuel supplies, and are also involved in the trading of these products. Other links with the natural resources sector are through the contacts that women retain with rural areas of origin (through exchanges, visits and rights to land and animals) and in their continuation of farming in the urban setting. The latter is constrained by lack of space and water, but is nonetheless significant as a supplement to purchased food. Ways in which women's livelihood strategies could be strengthened are discussed and the need for a multidimensional initiatives is emphasized. Credit (particularly for the poorest), confidence-building, access to information, and specific income-generating activities (urban agriculture, skills training and food processing, strengthening trading links with rural areas) are highlighted as major requirements
bak deletion stimulates gastric epithelial proliferation and enhances Helicobacter felis-induced gastric atrophy and dysplasia in mice
Helicobacter infection causes a chronic superficial gastritis that in some cases progresses via atrophic gastritis to adenocarcinoma. Proapoptotic bak has been shown to regulate radiation-induced apoptosis in the stomach and colon and also susceptibility to colorectal carcinogenesis in vivo. Therefore we investigated the gastric mucosal pathology following H. felis infection in bak-null mice at 6 or 48 wk postinfection. Primary gastric gland culture from bak-null mice was also used to assess the effects of bak deletion on IFN-γ-, TNF-α-, or IL-1β-induced apoptosis. bak-null gastric corpus glands were longer, had increased epithelial Ki-67 expression, and contained fewer parietal and enteroendocrine cells compared with the wild type (wt). In wt mice, bak was expressed at the luminal surface of gastric corpus glands, and this increased 2 wk post-H. felis infection. Apoptotic cell numbers were decreased in bak-null corpus 6 and 48 wk following infection and in primary gland cultures following cytokine administration. Increased gastric epithelial Ki-67 labeling index was observed in C57BL/6 mice after H. felis infection, whereas no such increase was detected in bak-null mice. More severe gastric atrophy was observed in bak-null compared with C57BL/6 mice 6 and 48 wk postinfection, and 76% of bak-null compared with 25% of C57BL/6 mice showed evidence of gastric dysplasia following long-term infection. Collectively, bak therefore regulates gastric epithelial cell apoptosis, proliferation, differentiation, mucosal thickness, and susceptibility to gastric atrophy and dysplasia following H. felis infection
Impact of alloy disorder on the band structure of compressively strained GaBiAs
The incorporation of bismuth (Bi) in GaAs results in a large reduction of the
band gap energy (E) accompanied with a large increase in the spin-orbit
splitting energy (), leading to the condition that
which is anticipated to reduce so-called CHSH Auger
recombination losses whereby the energy and momentum of a recombining
electron-hole pair is given to a second hole which is excited into the
spin-orbit band. We theoretically investigate the electronic structure of
experimentally grown GaBiAs samples on (100) GaAs substrates by
directly comparing our data with room temperature photo-modulated reflectance
(PR) measurements. Our atomistic theoretical calculations, in agreement with
the PR measurements, confirm that E is equal to for
9. We then theoretically probe the inhomogeneous
broadening of the interband transition energies as a function of the alloy
disorder. The broadening associated with spin-split-off transitions arises from
conventional alloy effects, while the behaviour of the heavy-hole transitions
can be well described using a valence band-anticrossing model. We show that for
the samples containing 8.5% and 10.4% Bi the difficulty in identifying a clear
light-hole-related transition energy from the measured PR data is due to the
significant broadening of the host matrix light-hole states as a result of the
presence of a large number of Bi resonant states in the same energy range and
disorder in the alloy. We further provide quantitative estimates of the impact
of supercell size and the assumed random distribution of Bi atoms on the
interband transition energies in GaBiAs. Our calculations support
a type-I band alignment at the GaBiAs/GaAs interface, consistent
with recent experimental findings
Evolution of surface gravity waves over a submarine canyon
The effects of a submarine canyon on the propagation of ocean surface waves
are examined with a three-dimensional coupled-mode model for wave propagation
over steep topography. Whereas the classical geometrical optics approximation
predicts an abrupt transition from complete transmission at small incidence
angles to no transmission at large angles, the full model predicts a more
gradual transition with partial reflection/transmission that is sensitive to
the canyon geometry and controlled by evanescent modes for small incidence
angles and relatively short waves. Model results for large incidence angles are
compared with data from directional wave buoys deployed around the rim and over
Scripps Canyon, near San Diego, California, during the Nearshore Canyon
Experiment (NCEX). Wave heights are observed to decay across the canyon by
about a factor 5 over a distance shorter than a wavelength. Yet, a spectral
refraction model predicts an even larger reduction by about a factor 10,
because low frequency components cannot cross the canyon in the geometrical
optics approximation. The coupled-mode model yields accurate results over and
behind the canyon. These results show that although most of the wave energy is
refractively trapped on the offshore rim of the canyon, a small fraction of the
wave energy 'tunnels' across the canyon. Simplifications of the model that
reduce it to the standard and modified mild slope equations also yield good
results, indicating that evanescent modes and high order bottom slope effects
are of minor importance for the energy transformation of waves propagating
across depth contours at large oblique angles
A serological investigation of caseous lymphadenitis in four flocks of sheep
A double antibody sandwich ELISA developed by ID-DLO, Lelystad to detect Corynebocterium pseudotuberculosis infection was used on 329 sheep from four pedigree Suffolk flocks in which clinical cases of caseous lymphadenitis (CLA) had occurred. At subsequent necropsy, typical CLA lesions were seen in 133 sheep, and the diagnosis was confirmed on culture. Lesions were most commonly seen in lungs (n = 46), parotid lymph nodes (n = 44), prescapular lymph nodes (n = 38) and mediastinal lymph nodes (n = 31). The sensitivity of the ELISA test for detecting culture-positive sheep was 0.88, while the specificity of the test was 0.55. The antibody ELISA detected 87.5 per cent of sheep that had CLA lesions restricted to internal organs only. It was concluded that the ELISA test has a valuable role in detecting sheep with both clinical and subclinical CLA
Bisphenol A Binds to the Local Anesthetic Receptor Site to Block the Human Cardiac Sodium Channel
Bisphenol A (BPA) has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a Kd of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII–IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII–IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations
Communication in cross-cultural consultations in primary care in Europe: the case for improvement. The rationale for the RESTORE FP 7 project
The purpose of this paper is to substantiate the importance of research about barriers and levers to the implementation of supports for cross-cultural communication in primary care settings in Europe. After an overview of migrant health issues, with the focus on communication in cross-cultural consultations in primary care and the importance of language barriers, we highlight the fact that there are serious problems in routine practice that persist over time and across different European settings. Language and cultural barriers hamper communication in consultations between doctors and migrants, with a range of negative effects including poorer compliance and a greater propensity to access emergency services. It is well established that there is a need for skilled interpreters and for professionals who are culturally competent to address this problem. A range of professional guidelines and training initiatives exist that support the communication in cross-cultural consultations
in primary care. However, these are commonly not implemented in daily practice. It is as yet unknown why professionals do not accept or implement these guidelines and interventions, or under what circumstances they would do so. A new study involving six European countries, RESTORE (REsearch into implementation STrategies to support
patients of different ORigins and language background in a variety of European primary care settings), aims to address these gaps in knowledge. It uses a unique combination of a contemporary social theory, normalisation process theory (NPT) and participatory learning and action (PLA) research. This should enhance understanding of the levers and barriers to implementation, as well as providing stakeholders, with the opportunity to generate creative solutions to problems experienced with the implementation of such interventions
On designing observers for time-delay systems with nonlinear disturbances
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2002 Taylor & Francis LtdIn this paper, the observer design problem is studied for a class of time-delay nonlinear systems. The system under consideration is subject to delayed state and non-linear disturbances. The time-delay is allowed to be time-varying, and the non-linearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of state observers such that, for the admissible time-delay as well as non-linear disturbances, the dynamics of the observation error is globally exponentially stable. An effective algebraic matrix inequality approach is developed to solve the non-linear observer design problem. Specifically, some conditions for the existence of the desired observers are derived, and an explicit expression of desired observers is given in terms of some free parameters. A simulation example is included to illustrate the practical applicability of the proposed theory.The work of Z. Wang was supported in part by the University of Kaiserslautern of Germany and the Alexander von Humboldt Foundation of Germany
- …