179 research outputs found

    A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants

    Get PDF
    \ua9 2022 by the authors. Licensee MDPI, Basel, Switzerland.There has been an explosion in research focused on Internet of Things (IoT) devices in recent years, with a broad range of use cases in different domains ranging from industrial automation to business analytics. Being battery-powered, these small devices are expected to last for extended periods (i.e., in some instances up to tens of years) to ensure network longevity and data streams with the required temporal and spatial granularity. It becomes even more critical when IoT devices are installed within a harsh environment where battery replacement/charging is both costly and labour intensive. Recent developments in the energy harvesting paradigm have significantly contributed towards mitigating this critical energy issue by incorporating the renewable energy potentially available within any environment in which a sensor network is deployed. Radio Frequency (RF) energy harvesting is one of the promising approaches being investigated in the research community to address this challenge, conducted by harvesting energy from the incident radio waves from both ambient and dedicated radio sources. A limited number of studies are available covering the state of the art related to specific research topics in this space, but there is a gap in the consolidation of domain knowledge associated with the factors influencing the performance of RF power harvesting systems. Moreover, a number of topics and research challenges affecting the performance of RF harvesting systems are still unreported, which deserve special attention. To this end, this article starts by providing an overview of the different application domains of RF power harvesting outlining their performance requirements and summarizing the RF power harvesting techniques with their associated power densities. It then comprehensively surveys the available literature on the horizons that affect the performance of RF energy harvesting, taking into account the evaluation metrics, power propagation models, rectenna architectures, and MAC protocols for RF energy harvesting. Finally, it summarizes the available literature associated with RF powered networks and highlights the limitations, challenges, and future research directions by synthesizing the research efforts in the field of RF energy harvesting to progress research in this area

    Integrated Smart Glove for Hand Motion Monitoring

    Get PDF

    Novel smart glove technology as a biomechanical monitoring tool

    Get PDF
    Developments in Virtual Reality (VR) technology and its overall market have been occurring since the 1960s when Ivan Sutherland created the world’s first tracked head-mounted display (HMD) – a goggle type head gear. In society today, consumers are expecting a more immersive experience and associated tools to bridge the cyber-physical divide. This paper presents the development of a next generation smart glove microsystem to facilitate Human Computer Interaction through the integration of sensors, processors and wireless technology. The objective of the glove is to measure the range of hand joint movements, in real time and empirically in a quantitative manner. This includes accurate measurement of flexion, extension, adduction and abduction of the metacarpophalangeal (MCP), Proximal interphalangeal (PIP) and Distal interphalangeal (DIP) joints of the fingers and thumb in degrees, together with thumb-index web space movement. This system enables full real-time monitoring of complex hand movements. Commercially available gloves are not fitted with sufficient sensors for full data capture, and require calibration for each glove wearer. Unlike these current state-of-the-art data gloves, the UU / Tyndall Inertial Measurement Unit (IMU) glove uses a combination of novel stretchable substrate material and 9 degree of freedom (DOF) inertial sensors in conjunction with complex data analytics to detect joint movement. Our novel IMU data glove requires minimal calibration and is therefore particularly suited to multiple application domains such as Human Computer interfacing, Virtual reality, the healthcare environment

    Formal Calibration Methodology for CFD Model Development to Support the Operation of Energy Efficient Buildings

    Get PDF
    Computational Fluid Dynamics (CFD) is a robust tool for modeling interactions within and between fluids and solids. CFD can help understand and predict phenomena that are difficult to test experimentally leading to cleaner, healthier, and better controlled internal environments. In this research a CFD model of the internal environment of an office space will be developed. The CFD model will then be calibrated using real data taken from a well-positioned wireless sensor network and weather station. The work focuses on developing systematically calibrated CFD models for controlled environments that include clean rooms, health environments, pharmaceutical storage rooms and information and communication technology locations, utilizing wireless sensor networks. The calibrated CFD model will be used to optimize the positions of the physical sensors for the control of energy efficient internal environments by building operators. This could result in significant energy and economic savings and lead to more accurately controlled internal environments

    Medicines adherence: Involving patients in decisions about prescribed medicines and supporting adherence

    Get PDF
    It is thought that between a third and a half of all medicines1 There are many causes of non-adherence but they fall into two overlapping categories: intentional and unintentional. Unintentional non-adherence occurs when the patient wants to follow the agreed treatment but is prevented from doing so by barriers that are beyond their control. Examples include poor recall or difficulties in understanding the instructions, problems with using the treatment, inability to pay for the treatment, or simply forgetting to take it. prescribed for long-term conditions are not taken as recommended. If the prescription is appropriate, then this may represent a loss to patients, the healthcare system and society. The costs are both personal and economic. Adherence presumes an agreement between prescriber and patient about the prescriber’s recommendations. Adherence to medicines is defined as the extent to which the patient’s action matches the agreed recommendations. Non-adherence may limit the benefits of medicines, resulting in lack of improvement, or deterioration, in health. The economic costs are not limited to wasted medicines but also include the knock-on costs arising from increased demands for healthcare if health deteriorates. Non-adherence should not be seen as the patient’s problem. It represents a fundamental limitation in the delivery of healthcare, often because of a failure to fully agree the prescription in the first place or to identify and provide the support that patients need later on. Addressing non-adherence is not about getting patients to take more medicines per se. Rather, it starts with an exploration of patients’ perspectives of medicines and the reasons why they may not want or are unable to use them. Healthcare professionals have a duty to help patients make informed decisions about treatment and use appropriately prescribed medicines to best effec

    Flexible antenna on polymer-conductive textile composite for epidermal electronics

    Get PDF
    In this paper, we investigate the applicability of polydimethylsiloxane (PDMS)-conductive textile composite for realization of a robust flexible antenna for skin-mounted applications. For this purpose, we present the design, manufacture, and testing of an ultra high frequency (UHF) 868 MHz loop antenna with the specified material. The antenna performance has been investigated through simulations and measurements on a human forearm phantom. Apart from having a low-profile implementation and being mechanically flexible, and thus comfortable for on-skin use, the novel antenna presented demonstrates a wide operating bandwidth with acceptable gain for epidermal electronics

    Reduced graphene oxide for the development of wearable mechanical energy-harvesters: A review

    Get PDF
    The unique characteristics of graphene have generated a lot of interest in the research community. A concept of utilizing graphene and its derivatives in the development of energy harvesters has just appeared in recent decades. This paper focuses on the application of reduced graphene oxide (rGO), a graphene derivative, in the development of wearable mechanical energy-harvesters to enable self-powered wearable sensing systems. Harvesting of energy has been a state-of-the-art phenomenon due to the ever-increasing requirement of power to run the sensing systems. Flexible systems that used rGO to gather energy with intensities ranging from a few microwatts to a few hundreds of microwatts have been used. Some examples are presented, focusing on the class of piezoelectric and triboelectric-based energy harvesters, with descriptions of their material composition, manufacturing methods, operating principle, and performance. Finally, the challenges and drawbacks of rGO-based energy harvesters are discussed, along with some of the potential solutions

    A concertina-shaped vibration energy harvester-assisted NFC sensor with improved wireless communication range

    Get PDF
    The explosive growth of wireless sensor platforms and their emerging wide range of application areas make the development of a sustainable and robust power source, an essential requirement to enable widespread deployment of these wireless devices. As a solution to this cardinal issue, this paper reports the design and fabrication of a resonant Vibration Energy Harvester (VEH) that comprises interleaved springs, manifesting a concertina shaped structure that can enable large mechanical amplitudes of oscillation. Within a relatively small footprint (9cm3), this concertina-VEH yields a large power density of 455.6ÎĽW/cm3g2 while operating at a resonant frequency of 75Hz. Additionally, the feasibility of the implemented VEH to support NFC based wireless sensor platform, that is yet uncharted, is also investigated in this work. A very low-power consumption Near Field Communication (NFC) wireless sensor node has been designed and developed for this purpose. The developed concertina VEH has been employed to power the electronics interface of this NFC sensor. Using mechanical energy derived from as low as 0.2g excitation, our study shows that the VEH can enhance the electromagnetic interaction between the transmitting antenna and the reader, resulting in a 120% increase in wireless communication range for the NFC sensor node. Such a high-performance energy harvester assisted NFC sensor node has the potential to be used in a wide range of Internet of Things (IoT) platforms as a reliable and sustainable power solution

    Screen printed epidermal antenna for IoT health monitoring

    Get PDF
    In this paper, we investigate the applicability of screen printable elastic silver ink on thermoplastic polyurethane (TPU) substrate for the realization of a flexible/stretchable antenna for direct implementation on human skin. For this purpose, we present the design, manufacture, and testing of an ultra- high frequency (UHF) 868 MHz loop antenna with the specified material. The antenna performance has been investigated through simulations and measurements on a human forearm phantom, including indoor wireless communication tests, demonstrating its potential for short-range IoT health monitoring applications
    • …
    corecore