890 research outputs found

    Unethical aspects of homeopathic dentistry

    Get PDF
    In the last year there has been a great deal of public debate about homeopathy, the system of alternative medicine whose main principles are that like cures like and that potency increases relative to dilution. The House of Commons Select Committee on Science and Technology concluded in November 2009 that there is no evidence base for homeopathy, and agreed with some academic commentators that homeopathy should not be funded by the NHS. While homeopathic doctors and hospitals are quite commonplace, some might be surprised to learn that there are also many homeopathic dentists practising in the UK. This paper examines the statements made by several organisations on behalf of homeopathic dentistry and suggests that they are not entirely ethical and may be in breach of various professional guidelines

    Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol

    Get PDF
    For oceans to be a significant source of primary organic aerosol (POA), sea spray aerosol (SSA) must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OM<sub>SSA</sub>). To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-<i>a</i>, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-<i>a</i> concentration ([Chl-<i>a</i>]) are the most consistent predictors of OM<sub>SSA</sub>. This relationship, combined with the published aerosol size dependence of OM<sub>SSA</sub>, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-<i>a</i>], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr<sup>−1</sup>. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere

    Model evaluation of marine primary organic aerosol emission schemes

    Get PDF
    In this study, several marine primary organic aerosol (POA) emission schemes have been evaluated using the GEOS-Chem chemical transport model in order to provide guidance for their implementation in air quality and climate models. These emission schemes, based on varying dependencies of chlorophyll <i>a</i> concentration ([chl <i>a</i>]) and 10 m wind speed (<i>U</i><sub>10</sub>), have large differences in their magnitude, spatial distribution, and seasonality. Model comparison with weekly and monthly mean values of the organic aerosol mass concentration at two coastal sites shows that the source function exclusively related to [chl <i>a</i>] does a better job replicating surface observations. Sensitivity simulations in which the negative <i>U</i><sub>10</sub> and positive [chl <i>a</i>] dependence of the organic mass fraction of sea spray aerosol are enhanced show improved prediction of the seasonality of the marine POA concentrations. A top-down estimate of submicron marine POA emissions based on the parameterization that compares best to the observed weekly and monthly mean values of marine organic aerosol surface concentrations has a global average emission rate of 6.3 Tg yr<sup>−1</sup>. Evaluation of existing marine POA source functions against a case study during which marine POA contributed the major fraction of submicron aerosol mass shows that none of the existing parameterizations are able to reproduce the hourly-averaged observations. Our calculations suggest that in order to capture episodic events and short-term variability in submicron marine POA concentration over the ocean, new source functions need to be developed that are grounded in the physical processes unique to the organic fraction of sea spray aerosol

    Ground-based retrieval of continental and marine warm cloud microphysics

    Get PDF
    A technique for retrieving warm cloud microphysics using synergistic ground based remote sensing instruments is presented. The SYRSOC (SYnergistic Remote Sensing Of Cloud) technique utilises a K<sub><i>a</i></sub>-band Doppler cloud RADAR, a LIDAR (or ceilometer) and a multichannel microwave radiometer. SYRSOC retrieves the main microphysical parameters such as cloud droplet number concentration (CDNC), droplets effective radius (<i>r</i><sub>eff</sub>), cloud liquid water content (LWC), and the departure from adiabatic conditions within the cloud. Two retrievals are presented for continental and marine stratocumulus advected over the Mace Head Atmospheric Research Station. Whilst the continental case exhibited high CDCN (<span style="border-top: 1px solid #000; color: #000;"><i>N</i></span> = 382 cm<sup>−3</sup>; 10th-to-90th percentile [9.4–842.4] cm<sup>−3</sup>) and small mean effective radius (<span style="border-top: 1px solid #000; color: #000;"><i>r</i><sub>eff</sub></span> = 4.3; 10th-to-90th percentile [2.9–6.5] μm), the marine case showed low CDNC and large mean effective radius (<span style="border-top: 1px solid #000; color: #000;"><i>N</i></span> = 25 cm<sup>−3</sup>, 10th-to-90th percentile [1.5–69] cm<sup>−3</sup>; <span style="border-top: 1px solid #000; color: #000;"><i>r</i><sub>eff</sub></span> = 28.4 μm, 10th-to-90th percentile [11.2–42.7] μm) as expected since continental air at this location is typically more polluted than marine air. The mean LWC was comparable for the two cases (continental: 0.19 g m<sup>−3</sup>; marine: 0.16 g m<sup>−3</sup>) but the 10th–90th percentile range was wider in marine air (continental: 0.11–0.22 g m<sup>−3</sup>; marine: 0.01–0.38 g m<sup>−3</sup>). The calculated algorithm uncertainty for the continental and marine case for each variable was, respectively, σ<sub><i>N</i></sub> = 161.58 cm<sup>−3</sup> and 12.2 cm<sup>−3</sup>, σ<sub><i>r</i><sub>eff</sub></sub> = 0.86 μm and 5.6 μm, σ<sub>LWC</sub> = 0.03 g m<sup>−3</sup> and 0.04 g m<sup>−3</sup>. The retrieved CDNC are compared to the cloud condensation nuclei concentrations and the best agreement is achieved for a supersaturation of 0.1% in the continental case and between 0.1%–0.75% for the marine stratocumulus. The retrieved <i>r</i><sub>eff</sub> at the top of the clouds are compared to the MODIS satellite <i>r</i><sub>eff</sub>: 7 μm (MODIS) vs. 6.2 μm (SYRSOC) and 16.3 μm (MODIS) vs. 17 μm (SYRSOC) for continental and marine cases, respectively. The combined analysis of the CDNC and the <i>r</i><sub>eff</sub>, for the marine case shows that the drizzle modifies the droplet size distribution and <span style="border-top: 1px solid #000; color: #000;"><i>r</i><sub>eff</sub></span> especially if compared to <i>r</i><sub>eff</sub><sup>MOD</sup>. The study of the cloud subadiabaticity and the LWC shows the general sub-adiabatic character of both clouds with more pronounced departure from adiabatic conditions in the continental case than in the marine

    Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    Get PDF
    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems

    Investigating organic aerosol loading in the remote marine environment

    Get PDF
    Aerosol loading in the marine environment is investigated using aerosol composition measurements from several research ship campaigns (ICEALOT, MAP, RHaMBLe, VOCALS and OOMPH), observations of total AOD column from satellite (MODIS) and ship-based instruments (Maritime Aerosol Network, MAN), and a global chemical transport model (GEOS-Chem). This work represents the most comprehensive evaluation of oceanic OM emission inventories to date, by employing aerosol composition measurements obtained from campaigns with wide spatial and temporal coverage. The model underestimates AOD over the remote ocean on average by 0.02 (21 %), compared to satellite observations, but provides an unbiased simulation of ground-based Maritime Aerosol Network (MAN) observations. Comparison with cruise data demonstrates that the GEOS-Chem simulation of marine sulfate, with the mean observed values ranging between 0.22 μg m−3 and 1.34 μg m−3, is generally unbiased, however surface organic matter (OM) concentrations, with the mean observed concentrations between 0.07 μg m−3 and 0.77 μg m−3, are underestimated by a factor of 2–5 for the standard model run. Addition of a sub-micron marine OM source of approximately 9 TgC yr−1 brings the model into agreement with the ship-based measurements, however this additional OM source does not explain the model underestimate of marine AOD. The model underestimate of marine AOD is therefore likely the result of a combination of satellite retrieval bias and a missing marine aerosol source (which exhibits a different spatial pattern than existing aerosol in the model)

    Applicability of condensation particle counters to measure atmospheric clusters

    Get PDF
    This study presents an evaluation of a pulse height condensation particle counter (PH-CPC) and an expansion condensation particle counter (E-CPC) in terms of measuring ambient and laboratory-generated molecular and ion clusters. Ambient molecular cluster concentrations were measured with both instruments as they were deployed in conjunction with an ion spectrometer and other aerosol instruments in Hyytiälä, Finland at the SMEAR II station between 1 March and 30 June 2007. The observed cluster concentrations varied and ranged from some thousands to 100 000 cm -3. Both instruments showed similar (within a factor of ~5) concentrations. An average size of the detected clusters was approximately 1.8 nm. As the atmospheric measurement of sub 2-nm particles and molecular clusters is a challenging task, we conclude that most likely we were unable to detect the smallest clusters. Nevertheless, the reported concentrations are the best estimates to date for minimum cluster concentrations in a boreal forest environment
    corecore