60 research outputs found

    The development of marine energy extraction

    Get PDF
    Accompanied with an increase in world population there is a growing demand for energy from both the industrial and domestic sectors [...

    Numerical investigation of shallow-water effects on hydrokinetic turbine wake recovery

    Get PDF
    Thrust, power and intermediate wake predictions obtained using resolved rotating blade with sliding mesh simulations for a hydrokinetic turbine (HKT) are assessed using the open-source flow solver OpenFOAM. Single- and two-phase URANS and DES computations are performed for three-blade, 0.5m diameter (D) turbine mounted on a stanchion that intersects the free surface with a tip-speed ratio λ = 6.15. The thrust and power predictions compare within 5% of the experimental data. Results show that the thrust predictions are dominated by the pressure distribution on the blades, whereas the shear stress plays a significant role in the power predictions. The turbine performance showed unsteadiness with amplitudes around 3% of the mean, due to the disruption of the flow each time a blade passed in front of the stanchion. The wake recovery is primarily due to the growth of shear layers (originating from the blade tips) towards the turbine axis, which are primarily caused by the cross-plane turbulent velocity. The shear layer growth is enhanced by the turbulence produced by the stanchion. Predictions of the mean wake profile compared within 10% of the experimental data, which is significant improvement over previous Fluent predictions that showed large errors of 22%. The improved predictions in OpenFOAM is attributed to better turbulence predictions. Two-phase results show that the interaction between the wake and free-surface is initiated by the interaction of stanchion with the free-surface. The free-surface creates a blockage effect that accelerates the flow in the upper bypass region and enhances the wake recovery

    Blade element momentum theory to predict the effect of wave-current interactions on the performance of tidal stream turbines

    Get PDF
    The durability and reliability of tidal energy systems can be compromised by the harsh environments that the tidal stream turbines need to withstand. These loadings will increase substantially if the turbines are deployed in exposed sites where high magnitude waves will affect the turbine in combination with fast tidal currents. The loadings affecting the turbines can be modelled using various numerical or analytical methods; each of them have their own advantages and disadvantages. To understand the limitations arising with the use of numerical solutions, the outcomes can be verified with practical work. In this paper, a Blade Element Momentum coupled with wave solutions is used to predict the performance of a scaled turbine in a flume and a tow tank. The analytical and experimental work is analysed for combinations of flow speeds of 0.5 and 1.0 m/s, wave heights of 0.2 and 0.4 and wave periods of 1.5 and 1.7 s. It was found that good agreement between the model and the experimental work was observed when comparing the data sets at high flow conditions. However, even if the average values were similar, the model tend to under predict the maximum and minimum values obtained in the experiments. When looking at the results of low flow velocities, the agreement between the average and time series was poorer

    Laboratory study of tidal turbine performance in irregular waves

    Get PDF
    Wave loading on tidal turbines is of key concern for determining blade and drive train design loads and the fatigue life of components. Furthermore, irregular waveforms are likely to add complexity to the loading patterns, and represent more realistic conditions. To investigate this issue, a set of laboratory tests was conducted in a large wave-tow facility at CNR-INSEAN, Rome. A 0.9 m diameter three bladed horizontal axis turbine model was fixed to the tow carriage and tested under tow, regular wave-tow and irregular-wave-tow conditions at a range of turbine rotational velocities. Thrust and torque on the blades and rotor were measured dynamically during testing using strain gauges. The control mode was switched between constant speed and constant torque to understand how this influenced turbine power capture and thrust loading, and assess the potential to use control methods to mitigate loading fluctuations. It was found that average power and thrust values were not affected by the control mode or the addition of regular or irregular waves. However, using torque control resulted in increased thrust fluctuations per wave period of the order of 40% of the mean thrust compared to under speed control. Therefore, the operational mode must be taken into consideration

    Design process for a scale horizontal axis tidal turbine blade

    Get PDF
    If tidal energy extraction is to be maximised then emphasis needs to be placed on the design of the rotor geometry to optimise performance. The work documented in this paper describes the process used in the design and validation of a new blade based on the Wortmann FX63-137 aerofoil. BEMT was used as an initial tool to redesign the blade due to speed in which calculations can be completed. CFD models were produced after to incorporate the hydrodynamics and provide a 3D solution. The performance coefficients for CP and CT were calculated by each of the two computational methods for comparison with the experimental testing. The experimental testing was conducted at the INSEAN tow tank to provide validation for the computational models. The CFD model was found to closely predict the performance coefficients of the turbine at low TSR at and peak power. The BEMT model over predicted both the CP and the CT when compared to the experimental work, however was found to be good as an initial method for redesigning the blade

    Analysis of the effects of control strategies and wave climates on the loading and performance of a laboratory scale horizontal axis tidal turbine

    Get PDF
    To understand the influence of complex hydrodynamic loads on tidal turbines, laboratory testing is necessary as a first approach. Previous laboratory work undertaken gave an indication that the use of speed control strategies may disguise the associated loading range that a turbine may be subjected to when this is operated with a variable speed control strategy. However, the preceding work was undertaken in a highly controlled environment without the influence of turbulent flows. The focus of this paper is directed towards the study of wave-induced loads on tidal turbines when these are controlled using two strategies and the impact that these parameters have on the turbine's performance when this is operated in a recirculating flume. Laboratory tests were undertaken with a 0.9 m diameter horizontal axis tidal turbine subjected to combined wave and current conditions with both regular and irregular waves. Constant speed and constant torque control strategies have been considered, for which rotor thrust, torque and blade root bending moment have been measured. Results show that similar to previous studies, average loads and power capture values remain unchanged between control strategies and the superposition of waves to the current. However, signal fluctuations are 2 to 3 times higher for torque control than for constant speed control strategy. A phase difference between the periodic signals of the turbine thrust and the incoming waves was also identified, in this case, the phase variation was lower when using torque than speed control. This work thus demonstrates the implication of studying strategies to control a marine converter from early stages of development

    An investigation into Reynolds scaling and solidity for a HATT tidal turbine

    Get PDF
    Scale model testing has formed a vital part of modelling research activities, allowing modelling researchers to validate code and model set ups against experimental data. Generally, scale testing to-date has proceeded at the 1/30th to 1/20th scale which is in line with the size of facilities available for testing such devices. This paper presents a fundamental study into the effects of Reynolds Number and Rotor Solidity when testing HATTs at 1/5th scale, 1/20th scale and 1/30th scale. The paper utilises a mixture of 1/30th scale (0.5 m diameter) experimental data for two, three and four rotor setups, 1/20th scale (0.9m diameters) experimental data for a three-blade rotor setup

    Prior consumption of a fat meal in healthy adults modulates the brain’s response to fat

    Get PDF
    Background: Consumption of fat is regulated by reward and homeostatic pathways, but no studies have examined the role of the intake of a high fat meal (HFM) on subsequent brain activation to oral stimuli. Objective: We evaluated how prior consumption of a HFM or water load (WL) modulates reward, homeostatic and taste brain responses to subsequent delivery of oral fat. Methods: A randomized 2-way crossover design (1-week apart) was used to compare prior consumption of a 250mL HFM (520kcal) (rapeseed oil (440kcal), emulsifier, sucrose, flavor cocktail) or non-caloric WL on brain activation to the delivery of repeated trials of an oral flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 male, age=25±2 years, BMI=22.4±0.8kg/m2). Analyses tested differences in brain activation to the CS and FS, and baseline cerebral blood flow (CBF), following the HFM and WL. Individual’s plasma cholecystokinin (CCK) concentration following the HFM was correlated with their BOLD activation. Results: Prior consumption of the HFM compared to the WL led to decreased anterior insula taste activation in response to both the CS (36.3%,P<0.05) and FS (26.5%,P<0.05). The HFM caused reduced amygdala activation (25.1%,P<0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula (5.7%,P<0.01)), homeostatic (hypothalamus (9.2%,P<0.01), thalamus (5.1%,P<0.05))), and reward areas (striatum (9.2%,P<0.01)) following the HFM. Individual’s plasma CCK concentration negatively correlated with brain activation in taste, oral somatosensory and reward areas. Conclusions: To reduce obesity, policy in industry is to lower the fat content of foods. Our results in healthy adults show that a HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain’s response to high fat counterparts, and guide future interventions to reduce obesity
    • …
    corecore