
Ellis, Robert and Allmark, Matthew and O'Doherty, Tim and Mason-

Jones, Allan and Ordonez-Sanchez, Stephanie and Johannesen, Kate 

and Johnstone, Cameron (2018) Design process for a scale horizontal 

axis tidal turbine blade. In: 4th Asian Wave and Tidal Energy Conference, 

2018-09-09 - 2018-09-13. , 

This version is available at https://strathprints.strath.ac.uk/65920/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195293966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Design Process for a Scale Horizontal Axis Tidal Turbine

Blade.

Robert Ellis †∗, Matthew Allmark †‡, Tim O’Doherty †§, Allan Mason-Jones †¶, Stephanie Ordonez-Sanchez ‖ ∗∗,

Kate Johannesen ‖ ††, Cameron Johnstone ‖ ‡‡

†School of Engineering, Cardiff University

Cardiff, CF24 3AA United Kingdom
∗EllisR10@cardiff.ac.uk

‡AllmarkMJ1@cardiff.ac.uk
§Odoherty@cardiff.ac.uk

¶Mason-JonesA@cardiff.ac.uk
‖Energy Systems Research Unit, University of Strathclyde

Glasgow, G1 1XJ, United Kingdom
∗∗s.ordonez@strath.ac.uk
††kate.porter@strath.ac.uk

‡‡cameron.johnstone@strath.ac.uk

Index Terms—Computational Fluid Dynamics, ANSYS CFX, Marine

Energy, Tidal Stream Turbines, Tidal Energy

Abstract—If tidal energy extraction is to be maximised then emphasis

needs to be placed on the design of the rotor geometry to optimise

performance. The work documented in this paper describes the process

used in the design and validation of a new blade based on the Wortmann

FX63-137 aerofoil.

BEMT was used as an initial tool to redesign the blade due to speed

in which calculations can be completed. CFD models were produced

after to incorporate the hydrodynamics and provide a 3D solution. The

performance coefficients for CP and CT were calculated by each of
the two computational methods for comparison with the experimental

testing. The experimental testing was conducted at the INSEAN tow

tank to provide validation for the computational models.

The CFD model was found to closely predict the performance co-

efficients of the turbine at low TSR at and peak power. The BEMT

model over predicted both the CP and the CT when compared to the

experimental work, however was found to be good as an initial method

for redesigning the blade.

I. INTRODUCTION

The need to produce sustainable and commercially viable energy

from renewable sources is becoming ever more apparent. All coun-

tries in the world except the USA have now signed up to the Paris

Agreement [?] with the aim of keeping the global temperature rise

below 2 degrees. The UK, being one of these countries, aims to have

15% of all energy produced being supplied by renewable sources

by 2020, up from 4.1% in 2012 [1]. Findings by [2] concluded

that wave and tidal stream could provide in the region of 20% of

the UK’s electricity consumption if fully exploited with the areas

of large interest including the Bristol Channel, Anglesey and the

Pentland Firth. The latter of these locations is currently the focus of

the MeyGen Project which has completed Phase 1A, the deployment

and installation of four 1.5MW turbines, and has now moved onto

Phase 1B which involves the installation on another four 1.5MW

turbines [3]. With such potential from around UK coastline the need

to develop durable and efficient turbines means that emphasis must

be placed on the design of the turbine and blades to help realise the

full energy potential.

To try and fully utilise the potential of the available resource

then turbines must be designed to maximise power extraction. One

key way of ensuring this is by placing the focus on the design of

the blade to ensure that the CP is optimised. Alongside this the

loading that the turbine is subject to must be minimised to ensure

the reliability and survivability of the devices placed in the water.

Excessive loading on the turbine can lead to extra associated costs

due to higher level of required maintenance. A balance between the

two performance coefficients needs to be found to ensure the cost

of the device, throughout its life, makes tidal energy commercially

viable and long lasting.

CMERG, Cardiff University, has been using the Wortmann

FX63 − 137 aerofoil, seen in Fig. 1, for its blade design since the

first device was designed by [4]. The properties for this design can

be found in Table I. The Wortmann profile was used as it has low

stall and high lift characteristics [5]. It was designed with a large

chord length and a high twist at the root of the blade to provide a

self-starting capability. Development of a new turbine has led to the

redesign of the blade whilst maintaining the Wortmann aerofoil.

The new turbine was to have a diameter of 900mm compared

to the previous turbine which was 500mm. The hub was to be

130mm to allow for the instrumentation to be placed in the nose

cone. Allowing for a 0.5mm gap between the hub and the base of

the blade, the total length of the blade, from root to tip, was increased

to 384.5mm, from 190mm.

Other than the increase in the total blade length, three key areas

were looked at for the new design; the blade twist from root to

tip and the chord length. In addition to these design requirements

a restriction was placed on the design; the CP was to be greater than

the original design and the CT was to be not significantly increased. It

was decided that the process would be done using the Blade Element

Momentum Theory (BEMT), CFD and experimental work.

There has been a selection of previous work that has looked at

comparisons between CFD, BEMT and experimental results using a

variety of different models. Lee et al. [6] found a good comparison be-

tween their in house BEMT code and ANSYS Fluent for performance

characteristics around the peak TSR, however there was a larger

discrepancy for low and high TSR values. A comparison by Johnson

et al. [7] looked at BEMT and ANSYS CFX using the SST k − ω
turbulence model. For a range of TSR values between 2 - 3.6 BEMT

was shown to under predict all performance coefficients at the lower

end of the range. Masters et al. [8] found good agreement between



Fig. 1: Wortmann FX63-137 aerofoil

BEMT and experimental models and O’Doherty et al. [9] found

good comparisons could be drawn between experimental results and

ANSYS Fluent.

This paper aims to give a description of the design processes

undertaken for the development of the new blade and provide

comparisons of the performance characteristics between BEMT, CFD

and experimental data.

TABLE I: Old Blade characteristics from Mason-Jones [10].

r/R Twist (deg) Chord Length (mm)

0.229 33.89 75.0

0.305 26.01 75.5

0.382 19.86 74.5

0.459 15.29 70.0

0.536 11.6 63.5

0.615 8.41 56.0

0.692 5.52 45.25

0.768 3.19 39.04

0.845 1.25 35.0

0.922 0.25 31.65

1.00 0.0 29.5

II. METHODOLOGY

A. Lift and Drag Coefficients

For the BEMT code, described fully in Section II-B, lift and drag

coefficients that correspond to the relevant aerofoil are used. For the

purpose of this work, when calcualting the lift and drag coefficnets

for the aerofil, two main options were looked at; two-dimensional

CFD models or the two-dimensional panel code XFoil [11].

Molland et al. [12] found that for a selection of NACA aerofoils

XFoil gave good predictions for the CL when compared to exper-

imental work, however for angles above 7 degrees the values for

CD were found to be lower. Other work by Jo and Lee [13] found

that CFD gave good predictions of lift and drag when compared to

experimental results although Morgado et al. [14] found that XFoil

gave a better prediction for both lift and drag when compared to the

CFD based SST k − ω turbulence models. From this it was decided

that XFoil was to be used when calculating the CL and CD values

for use in the BEMT code.

B. Blade Element Momentum Theory

BEMT has been used extensively to calculate the performance

characteristics of tidal stream turbines due to the comparative simplic-

ity in which the code can be written and executed. Coupled with the

small amount of time required to reach a solution it is an ideal method

for comparing multiple rotor geometries. Limitations in BEMT do

exist and correction factors need to be added to ensure the rotor is

treated with a finite number of blades, rather than as a disk, and that

tip and hub losses for the blades are accounted for [15].

Within momentum theory the turbine is modelled using a simple

ideal permeable disk, or actuator disk, that is placed in a stream

tube which is independent of the surrounding flow [16]. Equations

can be derived for the two unknown induction factors based on the

conservation of momentum. Details about the rotor geometry and the

number of blades in the turbine are not included so the momentum

theory is coupled with the blade element theory.

The blade element theory looks at resolving the forces on the blade,

via an iterative approach, by breaking it into a number of independent

radial elements. If the lift and drag coefficients are known for the

aerofoil in question then the distribution of the forces along the

blade can be found with respect to the induction factors [17]. The

combination of the two sets of equations from the momentum and

the blade element theories allows the performance of the turbine to

be found.

The code used for the work conducted here was developed at

Strathclyde University [18].

A selection of blade chord length distributions were considered.

This was done to try and maximise the power coefficient whilst trying

to keep the thrust coefficient to within 10% of the original Wortmann

FX63-137 blade used by Cardiff University [4]. Three examples of

the final selection of chord lengths are shown in Table II. Blade one

was now considered as the base case in the comparison. Blade two

had a reduced chord length at the root of the blade and an increased

chord length at the tip when compared to blade one. Blade three had

the same chord length at the root of the blade when compared with

blade one, but the chord length at the tip of the blade was similar to

that of blade two.

TABLE II: Blade characteristics comparison

r/R
Blade 1 Chord

(mm)

Blade 2 Chord

(mm)

Blade 3 Chord

(mm)

0.146 72.5 72.5 72.5

0.229 87.8 82.8 87.8

0.305 103.1 97.6 103.1

0.382 109.6 106.8 109.6

0.459 109.5 106.2 109.5

0.536 105.1 105.1 105.1

0.615 93.1 93.1 93.1

0.692 83.6 83.6 83.6

0.768 73.6 74.3 74.3

0.845 67.6 68.3 68.3

0.922 62.8 64.1 64.1

1.00 58.9 60.2 60.2

The areas of interest included looking at how changes to the root

and tip chord length affected the performance characteristics. For

each of the three blade designs a large selection of twist distributions

from tip to root were looked at, ranging from 15-25 degrees. The

pitch angle for the old blade was 6 degrees and so to determine the

optimised set up for the blade a range of pitch angles between 5 - 8

degrees were looked at. In total there were 44 possible variations per

blade so as to provide a wide comparison in the hope of optimising

the blade design.

C. Computational Fluid Dynamics

Once the geometric characteristics had been finalised via BEMT

a three-dimensional drawing was produced using SolidWorks for use

in the commercial CFD code ANSYS CFX.

Design Modeller, the inbuilt CAD software in ANSYS workbench,

was used to create the domain for the simulation. The turbine was



imported into the design space once drawn in SolidWorks. Two

domains were created using the origin of the turbine as the reference

point; the outer control volume and the moving reference frame

(MRF). A boolean allowed the two domains to be separated from

each other. In doing this the MRF could be treated as a separate

body and therefore be allowed to rotate, simulating the rotation of

the turbine. The turbine was subtracted from the MRF as CFX only

solves for fluid components and treats all volumes in the domain as

fluid, leaving a void with the outline of the turbine which would be

used to create the interaction of the fluid and the turbine in the model.

To determine the diameter of the MRF an initial mesh was chosen

and the diameter of the MRF was increased from a starting value

of 1m to see how the performance of the turbine was affected. The

results from this can be seen in Table II. The initial mesh was largely

unrefined in the outer control volume as the proximity of the MRF

to the blades would be the main factor affecting the results. It was

found that beyond a diameter greater than 1.3m the torque and thrust

values were unchanged.

TABLE III: Performance coefficients in relation to MRF diameter.

MRF Diameter (m) Torque (Nm) CP Thrust (N) CT

1 18.32 0.432 266.5 0.84

1.1 18.47 0.435 266.5 0.84

1.3 18.49 0.436 266.6 0.84

1.7 18.49 0.436 266.6 0.84

2.1 18.49 0.436 266.6 0.84

A mesh independence study was conducted to initially give an

idea of the expected performance of the turbine. The area of main

interest was the face sizing on the blades and the mesh density in

the MRF. The mesh was largely unstructured and used tetrahedral

elements. To reduce the number of elements in the hope of keeping

the computational time down the mesh sizing on the blade became

gradually more refined towards the tip of the blade as it moved away

from the root. The smallest element size on the blade was 0.003m
gradually increasing to 0.007m at the blade root. To achieve this

the blade was broken down into three faces, the tip, the middle and

the root. Each of these three faces could then have a face sizing

applied directly onto it allowing more control on the mesh size.

The remainder of the MRF was given a sizing of 0.02m. The outer

domain was limited to a maximum size of 0.2m.

The reason for the large sizing in the control volume was because

the wake was of less interest within this work so was subsequently of

secondary interest during the mesh independence study. By keeping

a larger mesh sizing the total number of elements could be reduced

thus reducing the computational complexity and solver time.

A domain interface was used to pass information between the two

domains. The sizing of the mesh on the domain interface was also

manually refined so that the same sizing was applied to both sides of

the interface to reduce any solver issues. The final mesh contained

around 3 million elements, with around 1.2 million of these being

contained within the MRF.

CFX Pre was used to set up the boundary conditions for the

problem. The inlet was given a flow velocity of 1m s
−1, the walls

were set to a no slip condition to account for the frictional effect of

the tow tank. The top was left as an opening and the outlet was given

a static pressure of 0Pa as the problem in question was not pressure

driven. The turbine blades, hub and stanchion were all given the no

slip wall condition.

To create the rotation desired a MRF was used as it allows a

rotational component to be added to the model. The angular velocity

could be set in accordance with the desired tip speed ratio (TSR). A

range of TSR’s between 0 and 7.5 were run within the model. Both

steady state and transient models were initially looked at to determine

the difference, if any, between the performance coefficients. It was

found that the difference between the results was less than 2% as

seen in Table IVso the steady state model was used going forward

to help reduce the computational time.

TABLE IV: Steady state and transient results comparison.

Model Type CP CT

Steady State 0.421 0.836

Transient 0.428 0.849

Percentage Difference 1.6 1.5

Within the steady state model the turbine itself is not moving,

rather the water in the MRF is subject to the rotational velocity

denoted in the setup. The result is not dependent on time and is a

time-averaged value over the duration of the model. Transient models

use a sliding mesh approach to simulate the rotation of the turbine

with respect to time and the values for torque and thrust can be seen

at each time step if required.

The SST k-omega turbulence model was used to close the RANS

equations due to the improved performance in adverse pressure gradi-

ents when compared to the k-epsilon or k-omega models individually

[19].

Experimental validation was required for the model and testing

was conducted in the INSEAN tow tank facility. The outer control

volume used the same cross sectional dimensions as the INSEAN

tank. Details for this can be found in Section II-D.

D. Experimental

The experimental testing was conducted in the tow tank facility

at INSEAN. The dimensions of the tank were 9m (width) x 3.5m
(depth) x 220m (length). The turbine was fixed to the carriage with

the centre of the turbine being placed 1.5m below the surface of the

water. The blockage ratio for the tow tank was around 2% so no

correction factor was needed [20].

The turbine was operated under speed control according to the

desired TSR. The acceleration and slowing of the carriage meant that

the useful usable distance was reduced to around 190m. Between

each run the turbine was brought back to that start position and then

the tank left to settle so any turbulence generated from the previous

run would dissipate. Two TSR cases were measured each run to

maximise the time available for testing.

The set up for the turbine can be seen in Fig. 2. Despite the carriage

velocity being set to the desired speed a pitot tube was also used

to give a second measure for the tow speed. The tow speed of the

carriage was 1m s
−1. A valeport current measuring device can also

be seen however this was not used during the characterisation runs.

III. RESULTS AND DISCUSSION

To identify the optimum blade design the BEMT results were

looked at allowing the design of the 3D blade for use in the CFD

model and for manufacture in the workshop. The experimental results

were looked at and compared with the results obtained from testing

of the old turbine to determine the changes in performance. Next

the CFD and experimental results were compared with the aim of

providing validation for the computational models. Lastly the two

computational methods were compared to see how each faired at

predicting the performance of a tidal turbine.



Fig. 2: INSEAN tow tank set up.

A. BEMT

When looking at the results from the BEMT models the range

of chord lengths and blade twists mentioned in Section II-B were

all compared. The optimum chord length distribution was found to

be that of Blade 1 as seen in Table II. Out of the range of twist

distributions mentioned in Section II-B the 4 with the highest perfor-

mance coefficients were plotted against each other for comparison.

The power coefficient for the 19 degree twist distribution was found

to be the highest as shown in Fig. 4. The peak CP was just over

0.45 at a TSR of 3.5.

Fig. 3: Old blade (left) and the new blade (right)

From this point onwards when talking about the blade, the chord

lengths and twist are those of Blade 1 in Table II and 19 degrees

respectively. A comparison between the new design and the old

design can be seen in Fig. 3. It is worth noting that the attachment

method of the blade to the hub due to the design on the turbine. The

pin on the base of the old blade was previously used where as the

new blade contains a bore hole in the base that a pin fits into and is

grub screwed in place.

Fig. 5 shows the CT for the same cases. It can actually be seen

that the 19 degree case has the highest thrust coefficient over the

entire range of TSR’s when compared to those of 20 - 22. One of

the initial criteria was to keep the CT within 10%. So despite the

CT being higher for the 19 degree case it was still within the remit

of the design and so due this design having the highest value of CP

compared to the other models it was chosen going forward.
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Fig. 5: Comparison of the BEMT CT predictions

for twist distributions between 19-22 degrees

The geometrical design of the blade was, at this point, complete

and could be modelled for use in the CFD set up. The pitch angle

for the old blade was 6 degrees and so to determine the optimised set

up for the blade a range of pitch angles between 5 - 8 degrees were

looked at. The power and thrust coefficients for these pitch angles

can be seen in Fig. 6 and 7 respectively.

The pitch angle of 8 degrees was found to have the highest CP

at ≈ 0.45 while also having a low CT of ≈ 0.88 at peak TSR.

SolidWorks was used to produce the three dimensional drawing of

the blade. The final blade was 384.5mm from root to tip with a



twist of 19 degrees. The pitch angle was set to 8 degrees for all the

corresponding CFD an experimental models.
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Fig. 6: Comparison of the BEMT CP predictions

for pitch angles of 5-8 degrees
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Fig. 7: Comparison of the BEMT CT predictions

for pitch angles of 5-8 degrees.

B. Experimental

The experimental work was carried out in the INSEAN tow tank

facility as discussed in Section II-D. The results for power and thrust

coefficients are shown in Fig. 8 and 9 respectively. Due to the time

constraints when testing, TSR values above 1.5 and below 5.5 were

not looked at. The aim of this was to try and get good characterisation

of the turbine in the region of peak power. Peak power for the old

turbine was approximately 3.65 and so again this area was looked at

with more interest.

The error bars shown for both the CP and CT represent +/− the

standard deviation. This deviation is not a quote on the uncertainty

of the measurements but rather the fluctuations seen in the recorded

measurements from each run. During each run two values of TSR

were recorded, again due to time constraints. The total time for

recording the data was close to 180 s at a sample rate of 200Hz.

The time was split evenly between the two TSR values. A small

period of time was allowed in-between to account for the change

in the speed control so that the turbine could reach the necessary

rotational velocity.
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Fig. 8: Experimental data with repeats for CP
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Fig. 9: Experimental data with repeats for CT

Repeat runs were done for the region around peak CP . As can be

seen in both Fig. 8 and 9 the repeatability of the results is good. Very

little difference, in the order of 2.5%, is seen between 3 runs at a

TSR of 3.6 falling comfortably within the standard deviation of the

measurements.

One of the criteria when setting out was to ensure that the CT

was not greatly increased when compared to the original design. By

looking at the experimental results the CT was found to be around

0.81 at peak power. The second objective was to increase the CP

for the turbine. Fig. 10 shows a comparison between the new blade

being tested at the INSEAN facility and the old blade being tested at

the Liverpool Flume. One thing to mention about the experimental

testing for the old turbine was that the Liverpool flume dimensions

mean that the blockage ratio is 17.5%. No correction factors have

been added when calculating these results, which should be the case



according to Garrett and Cummins [21] otherwise what is seen is an

artificially high value of CP .

The power coefficients for the original turbine also drops away

much quicker towards free-wheeling as it reaches higher TSR values.

With regards to the new blade this effect is not quite as dramatic. The

CT plots have not been included for the old blade due to problems

with the measurement systems during the testing campaign. From

extensive modelling however by [22] the CT was found to be in the

region of 0.85.
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Fig. 10: Experimental data comparison between the old and new blades

at 1m s
−1 for CP

C. CFD Validation

The CFD model was set up to directly replicate the INSEAN tow

tank geometry, however the length of the model did not need to be

190m and was therefore reduced to 20m to reduce the computational

time, while also ensuring the outlet had no impact on the results. By

looking at Fig. 11 it can be seen that the CFD models correspond

very closely with the values from INSEAN for the CP . The stanchion

was included within the CFD model so as to keep everything as close

as possible.

Similarly for the CT values shown in Fig. 12 good agreement is

seen between the CFD and experimental results up to peak TSR.

A slight discrepancy can be seen for TSR values greater than 5,

however for reasons mentioned in Section III-B fewer readings were

taken in the higher TSR region making it hard to comment on whether

the two curves would collapse down onto each other.

The results show that the CFD model provides a good comparison

to experimental testing as seen from the similarities in the results for

both the performance characteristics.

D. Computational Comparison

Due to the similarity in the CFD model and experimental results

as shown in Section III-C a comparison was then drawn between the

two computational methods used during the work. The CFD model

included the stanchion and the thrust was taken from the blades and

the hub. However within BEMT the stanchion is not accounted for

and only the thrust on the blades is calculated. A second CFD model,

still using the INSEAN geometry, was set up however this time the

stanchion was removed from the model and the thrust acting on the

hub was not included when calculating the thrust coefficient.

0 1 2 3 4 5 6 7

Tip Speed Ratio (TSR)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 C
P

 Experimental

 CFD with Stanchion

Fig. 11: Comparison between experimental and CFD models

with the inclusion of the stanchion for CP
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Fig. 12: Comparison between experimental and CFD models

with the inclusion of the stanchion for CT

The results from the three different models are shown in Fig. 13

and 14. The values for the BEMT in the lower TSR region, less than

TSR 2, have been ignored. One reason for this is that because BEMT

solves for a 2D aerofoil no 3D, or span wise, flow is accounted for

and so stall delay can become an issue, leading to an inaccuracy in

predicting the low TSR performance characteristics of a turbine [23],

[24].

By comparing the BEMT to the CFD model that includes the

stanchion it can be seen that the BEMT over predicts both the power

and thrust coefficients. As mentioned earlier this could be down to

the fact that the stanchion has not been taken into consideration as

part of the BEMT calculation. The flow directly behind the blades

will have a lower velocity due to the blockage of the stanchion on

the fluid. The proximity of the blade to the stanchion can cause the

area of lower flow velocity to attach to the back of the blade and

ultimately reduce the performance of the blade passing the stanchion

[22].

If the stanchion is then removed from the CFD model and
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Fig. 13: Comparison of the CP between CFD and BEMT
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Fig. 14: Comparison of the CT between CFD and BEMT

compared with the BEMT results then what we see is a much closer

comparison between both the trust and the power coefficient as the

blockage from the stanchion is no longer an issue within the model.

BEMT still seems to over predict for both the of the coefficients,

however around the peak of the curve the grouping is close. The

disagreement comes at the higher and lower range of TSR values

which fits with reasons mentioned earlier when comparing the BEMT

results to the CFD model with the stanchion.

IV. CONCLUSION

When setting out the aim of the work was to look at a new blade

design, based on the Wortmann FX63-137 aerofoil, that improved the

CP when compared to the old blade modelled at Cardiff University.

BEMT and CFD were used in order to produce a new design. The

experimental model was set up to give validation to the numerical

methods being used. The secondary aim was to see how BEMT and

CFD performed, both against each other and against the experimental

model, when predicting the performance of a tidal turbine for use in

future work.

A visible improvement in the power coefficient of the turbine was

seen when compared to the original blade design. BEMT was used

as the initial method for designing the new blade and so from this it

can be said that it is a useful tool when looking to change the design

of a turbine blade. Despite its limitation it does offer a quick and

accurate blade design procedure.

CFD was shown to have good agreement with the experimental

results when modelled directly. Very little difference was seen be-

tween the results at the peak of the power curve. However when

comparing BEMT to the CFD model with the stanchion it could be

seen the BEMT over predicted for both the CP and CT . Despite

BEMT giving a good indicator of blade performance, when it comes

to simulating a deployed turbine it over predicts the performance

characteristics.

The CFD model without the stanchion and the BEMT model also

showed a good agreement except at the lower TSR regions, the

reasons for which are discussed in Section III-D.
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