199 research outputs found

    Emergent individuals and the resurrection

    Get PDF

    Validation of thermal-mechanical modeling of stainless steel forgings

    Get PDF
    A constitutive model for recrystallization has been developed within the framework of an existing dislocation-based rate and temperature-dependent plasticity model. The theory has been implemented and tested in a finite element code. Material parameters were fit to data from monotonic compression tests on 304L steel for a wide range of temperatures and strain rates. The model is then validated by using the same parameter set in predictive thermal-mechanical simulations of experiments in which wedge forgings were produced at elevated temperatures. Model predictions of the final yield strengths compare well to the experimental results

    Disease prevention strategies for QX disease (Marteilia sydneyi) of Sydney rock oysters (Saccostrea glomerata)

    Get PDF
    The Sydney rock oyster (Saccostrea glomerata) forms the basis of an important aquaculture industry on the east coast of Australia. During the 1970s, production of S. glomerata began to decline, in part as a result of mortalities arising from Queensland unknown (QX) disease. Histological studies implicated the paramyxean parasite Marteilia sydneyi in the disease outbreaks. Disease zoning was implemented to prevent the spread of M. sydneyi-infected oysters. This control measure hindered rock oyster farming, which historically has relied on transferring wild-caught spat between estuaries for on-growing to market size and has not prevented the subsequent occurrence of QX disease in the Georges and Hawkesbury rivers in central New South Wales. Management of QX disease has been hampered by the complicated life cycle of M. sydneyi, with outbreaks of QX disease likely to be regulated by a combination of the abundance of intermediate host of M. sydneyi, environmental stressors, and the immunocompetence of S. glomerata. The future of the Sydney rock oyster industry relies on understanding these factors and progressing the industry from relying on farming wild-caught seed to the successful commercialization of hatchery-produced QX-resistant S. glomerata

    Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy.

    Get PDF
    BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies

    DNA polymerase δ-dependent repair of DNA single strand breaks containing 3′-end proximal lesions

    Get PDF
    Base excision repair (BER) is the major pathway for the repair of simple, non-bulky lesions in DNA that is initiated by a damage-specific DNA glycosylase. Several human DNA glycosylases exist that efficiently excise numerous types of lesions, although the close proximity of a single strand break (SSB) to a DNA adduct can have a profound effect on both BER and SSB repair. We recently reported that DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB are resistant to DNA glycosylase activity and this study further examines the processing of these ‘complex’ lesions. We first demonstrated that the damaged base should be excised before SSB repair can occur, since it impaired processing of the SSB by the BER enzymes, DNA ligase IIIα and DNA polymerase β. Using human whole cell extracts, we next isolated the major activity against DNA lesions located as a second nucleotide 5′-upstream to a DNA SSB and identified it as DNA polymerase δ (Pol δ). Using recombinant protein we confirmed that the 3′-5′-exonuclease activity of Pol δ can efficiently remove these DNA lesions. Furthermore, we demonstrated that mouse embryonic fibroblasts, deficient in the exonuclease activity of Pol δ are partially deficient in the repair of these ‘complex’ lesions, demonstrating the importance of Pol δ during the repair of DNA lesions in close proximity to a DNA SSB, typical of those induced by ionizing radiation

    Identifying key drivers of the impact of an HIV cure intervention in sub-Saharan Africa

    Get PDF
    BACKGROUND:  The properties required of an intervention that results in eradication or control of HIV in absence of antiretroviral therapy (ART-free viral suppression) to make it cost-effective in low income settings are unknown. METHODS:  We used a model of HIV and ART to investigate the effect of introducing an ART-free viral suppression intervention in 2022 in an example country of Zimbabwe. We assumed that the intervention (cost: 500)wouldbeaccessiblefor90500) would be accessible for 90% of the population, be given to those on effective ART, have sufficient efficacy to allow ART interruption in 95%, with a rate of viral rebound 5% per year in the first three months, and a 50% decline in rate with each successive year. RESULTS:  An ART-free viral suppression intervention with these properties would result in over 0.53 million disability-adjusted-life-years averted over 2022-2042, with a reduction in HIV programme costs of 300 million (8.7% saving). An intervention of this efficacy costing anything up to $1400 is likely to be cost-effective in this setting. CONCLUSION:  Interventions aimed at curing HIV have the potential to improve overall disease burden and to reduce costs. Given the effectiveness and cost of ART, such interventions would have to be inexpensive and highly effective

    Genotype–phenotype associations: substitution models to detect evolutionary associations between phenotypic variables and genotypic evolutionary rate

    Get PDF
    Motivation: Mapping between genotype and phenotype is one of the primary goals of evolutionary genetics but one that has received little attention at the interspecies level. Recent developments in phylogenetics and statistical modelling have typically been used to examine molecular and phenotypic evolution separately. We have used this background to develop phylogenetic substitution models to test for associations between evolutionary rate of genotype and phenotype. We do this by creating hybrid rate matrices between genotype and phenotype
    corecore