10,131 research outputs found

    The entanglement beam splitter: a quantum-dot spin in a double-sided optical microcavity

    Full text link
    We propose an entanglement beam splitter (EBS) using a quantum-dot spin in a double-sided optical microcavity. In contrast to the conventional optical beam splitter, the EBS can directly split a photon-spin product state into two constituent entangled states via transmission and reflection with high fidelity and high efficiency (up to 100 percent). This device is based on giant optical circular birefringence induced by a single spin as a result of cavity quantum electrodynamics and the spin selection rule of trion transition (Pauli blocking). The EBS is robust and it is immune to the fine structure splitting in a realistic quantum dot. This quantum device can be used for deterministically creating photon-spin, photon-photon and spin-spin entanglement as well as a single-shot quantum non-demolition measurement of a single spin. Therefore, the EBS can find wide applications in quantum information science and technology.Comment: 7 pages, 5 figure

    Six months of mass outflow and inclined rings in the ejecta of V1494 Aql

    Get PDF
    V1494 Aql was a very fast nova which reached a visual maximum of mv≃ 4.0 by the end of 1999 December 3. We report observations from 4 to 284 d after discovery, including submillimetre- and centimetre-band fluxes, a single MERLIN image and optical spectroscopy in the 410 to 700 nm range. The extent of the radio continuum emission is consistent with a recent lower distance estimate of 1.6 kpc. We conclude that the optical and radio emission arises from the same expanding ejecta. We show that these observations are not consistent with simple kinematical spherical shell models used in the past to explain the rise and fall of the radio flux density in these objects. The resolved remnant structure is consistent with an inclined ring of enhanced density within the ejecta. Optical spectroscopy indicates likely continued mass ejection for over 195 d, with the material becoming optically thin in the visible sometime between 195 and 285 d after outburst

    A-STAR: The All-Sky Transient Astrophysics Reporter

    Full text link
    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.Comment: Accepted for the European Astronomical Society Publications Series: Proceedings of the Fall 2012 Gamma-Ray Burst Symposium held in Marbella, Spain, 8-12 Oct 201

    Relative multiplexing for minimizing switching in linear-optical quantum computing

    Get PDF
    Many existing schemes for linear-optical quantum computing (LOQC) depend on multiplexing (MUX), which uses dynamic routing to enable near-deterministic gates and sources to be constructed using heralded, probabilistic primitives. MUXing accounts for the overwhelming majority of active switching demands in current LOQC architectures. In this manuscript, we introduce relative multiplexing (RMUX), a general-purpose optimization which can dramatically reduce the active switching requirements for MUX in LOQC, and thereby reduce hardware complexity and energy consumption, as well as relaxing demands on performance for various photonic components. We discuss the application of RMUX to the generation of entangled states from probabilistic single-photon sources, and argue that an order of magnitude improvement in the rate of generation of Bell states can be achieved. In addition, we apply RMUX to the proposal for percolation of a 3D cluster state in [PRL 115, 020502 (2015)], and we find that RMUX allows a 2.4x increase in loss tolerance for this architecture.Comment: Published version, New Journal of Physics, Volume 19, June 201

    Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data

    Get PDF
    Abstract We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do

    A Test for Characterizing Delamination Migration in Carbon/Epoxy Tape Laminates

    Get PDF
    A new test method is presented for the purpose of investigating migration of a delamination between neighboring ply interfaces in fiber-reinforced, polymer matrix tape laminates. The test is a single cantilever beam configuration consisting of a cross-ply laminate with a polytetrafluoroethylene insert implanted at the mid-plane and spanning part way along the length of the specimen. The insert is located between a 0- degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The specimen is clamped at both ends onto a rigid baseplate and is loaded on its upper surface via a piano hinge. Tests were conducted with the load-application point located on the intact portion of the specimen in order to initiate delamination growth onset followed by migration of the delamination to a neighboring 90/0 ply interface by kinking through the 90-degree ply stack. Varying this position was found to affect the distance relative to the load-application point at which migration initiated. In each specimen, migration initiated by a gradual transition of the delamination at the 0/90 interface into the 90-degree ply stack. In contrast, transition of the kinked crack into the 90/0 interface was sudden. Fractography of the specimens indicated that delamination prior to migration was generally mixed mode-I/II. Inspection of the kink surface revealed mode-I fracture. In general, use of this test allows for the observation of the growth of a delamination followed by migration of the delamination to another ply interface, and should thus provide a means for validating analyses aimed at simulating migration

    Geometry of General Hypersurfaces in Spacetime: Junction Conditions

    Full text link
    We study imbedded hypersurfaces in spacetime whose causal character is allowed to change from point to point. Inherited geometrical structures on these hypersurfaces are defined by two methods: first, the standard rigged connection induced by a rigging vector (a vector not tangent to the hypersurface anywhere); and a second, more physically adapted, where each observer in spacetime induces a new type of connection that we call the rigged metric connection. The generalisation of the Gauss and Codazzi equations are also given. With the above machinery, we attack the problem of matching two spacetimes across a general hypersurface. It is seen that the preliminary junction conditions allowing for the correct definition of Einstein's equations in the distributional sense reduce to the requirement that the first fundamental form of the hypersurface be continuous. The Bianchi identities are then proven to hold in the distributional sense. Next, we find the proper junction conditions which forbid the appearance of singular parts in the curvature. Finally, we derive the physical implications of the junction conditions: only six independent discontinuities of the Riemann tensor are allowed. These are six matter discontinuities at non-null points of the hypersurface. For null points, the existence of two arbitrary discontinuities of the Weyl tensor (together with four in the matter tensor) are also allowed.Comment: Latex, no figure

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α≈1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
    • …
    corecore