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Van Allen Probes show that the inner radiation zone
contains no MeV electrons: ECT/MagEIS data
J. F. Fennell1, S. G. Claudepierre1, J. B. Blake1, T. P. O’Brien1, J. H. Clemmons1, D. N. Baker2,
H. E. Spence3, and G. D. Reeves4

1Space Science Applications Laboratory, Aerospace Corporation, El Segundo, California, USA, 2Laboratory for Atmospheric and
Space Physics, University of Colorado, Boulder, Colorado, USA, 3Institute for the Study of Earth, Oceans, and Space, University
of New Hampshire, Durham, New Hampshire, USA, 4Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Abstract Wepresent Van Allen Probe observations of electrons in the inner radiation zone. Themeasurements
were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer
(MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from
penetrating protons, providing cleanmeasurements. No electrons>900keVwere observedwith equatorial fluxes
above background (i.e., >0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9
model and CRRES observations. Electron fluxes <200keV exceeded the AE9 model 50% fluxes and were lower
than the higher-energy model fluxes. Phase space density radial profiles for 1.3≤ L*< 2.5 had mostly positive
gradients except near L*~2.1, where the profiles for μ=20–30MeV/G were flat or slightly peaked. Themajor result
is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zonewhile current
radiation belt models and previous publications do.

1. Introduction

The radiation belts are generally described as having inner and outer zones or belts with a transition region or
slot between them. The inner zone is dominated by intense fluxes of high-energy protons, while the outer
belt consists of energetic electrons and ring current ions. However, energetic electrons are also present in the
inner belt, which is one of the most difficult places to make clean electron measurements, because of the
highly penetrating protons present there. Satellites that traverse the inner radiation belt, defined here as
L*< 2.5, have great difficulty distinguishing signals generated by the electrons from those generated by
protons [Vampola, 1998]. The energies of the protons are sufficiently high that they penetrate most
shielding and deposit unwanted energy in detectors targeted at electrons. Many of the very early
observations were also contaminated by electrons injected into the inner zone regions by the high-altitude
nuclear detonation events such as Starfish [Hess, 1963a, 1963b]. The Starfish fluxes slowly decayed at
some L* values and more rapidly for L*> 1.7 or so [Pfitzer and Winckler, 1968]. Prior to Starfish, there
were only sparse observations of the natural electron populations in the inner zone [Pizzella et al., 1962;
Pfitzer and Winckler, 1968; Hess, 1968, pp. 147–151], and it was not certain that there were MeV electrons
present. To compound this situation, there have been relatively few recent satellite missions (within the
last 30 years) that covered this region close to the magnetic equator, where the particle fluxes are the
highest and one can measure the complete electron pitch angle distribution. One such mission was
CRRES (Combined Release and Radiation Effects Satellite), launched more than 24 years ago, and since
then, there has been a lack of clean comprehensive electron measurements in this near-equatorial inner
magnetosphere region. With the launch of the Van Allen Probes in August 2012 [Mauk et al., 2013] into
~600 × 30500 km orbits with ~10° inclination, we are revisiting this region once more with
quality instrumentation.

There has been much discussion about the sources of the inner zone electrons, starting with the possibility
that they come from the same neutron albedo process that generates the core inner zone protons [Lenchek
et al., 1961; Selesnick et al., 2007, and references therein]. The neutron albedo process was shown early to be
too weak to account for the observed electron flux levels, although it predicted that the fluxes would be
dominated by <MeV energies. Hess [1968] summarized the limited existing inner zone pre-Starfish event
results as showing that the “…spectrum is flat for 100< Ee< 400 keV” and “… not certain whether there are
any electrons present of E> 800 keV.”More recently, Abel et al. [1994, 1997] presented spectra of equatorially
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mirroring electrons for a few L values
based on the CRRES Magnetic Electron
Spectrometer A [Vampola et al., 1992]
data. These showed relatively soft
spectra for energies >500 keV and are
discussed more below.

We have organized the rest of the
paper as follows: First, we describe how
the measurements are made. Then we
set the context for the observations in
the February–March 2013 time frame.
We follow with a presentation on the
equatorial electron spectra and phase
space density (PSD) radial profiles for
a range of constant first invariant
values. Then we discuss the spectra
and PSD results. Finally, we provide
summary conclusions.

2. Measurements

The two Van Allen Probes (A and B) carry
identical complements of state-of-the art
particle, field, and wave measurements.
While the electron observations were
essentially the same on both spacecraft,
for simplicity, we focus on the
measurements made by Probe A in this
study. The observations were taken

while Probe A was traversing the inner radiation zone and lower slot region which we define, using
Roederer’s L* [Roederer, 1970], as 1.2 ≤ L* ≤ 2.5, based on the OP77Q [Olson and Pfitzer, 1977] and TS04D
[Tsyganenko and Sitnov, 2005] field models. At the low near-equatorial altitudes studied during the quiet 24
February to 1 March 2014 period chosen, both models give essentially the same results for L* and B/B0 along
the satellite trajectory. We selected traversals through this region that were very close to the magnetic
equator with B/B0 ≤ 1.025 in the intervals used. The locally mirroring electrons had second invariant values K
such that 0 ≤ K< 0.01 RE√G. The electron measurements were made by the Magnetic Electron Ion
Spectrometers (MagEIS) [Blake et al., 2013] that are part of the Energetic Particle, Composition, and Thermal
Plasma (ECT) suite [Spence et al., 2013] on the Van Allen Probes. The three different MagEIS spectrometers
relevant to this study are the LOW, MED75, and HIGH units which cover the energy ranges 36–215 keV,
230–1050 keV, and 841–4120 keV, respectively. All three units are mounted on the spacecraft with their
fields of view oriented at 105° to the approximately Sun-pointing spin axis. The data from each
spectrometer are accumulated over many angular sectors during each satellite rotation to obtain pitch
angle distributions. The MagEIS data used have been corrected by removing any proton response using
the algorithm described in S. G. Claudepierre et al. (A background correction algorithm for Van Allen
Probes MagEIS electron flux measurements, J. Geophys. Res., in review, 2015). As noted there, not all
MagEIS electron channels can be corrected. From those that could, we selected 19 differential MagEIS
channels with central energies in the range of 37 to 4080 keV for this study. In addition, the as flown
MagEIS HIGH energy channel definitions were revised based on drift-echo analyses [O’Brien et al., 2015]
and GEANT4 [Allison et al., 2006] simulations.

3. Observations

Figure 1 provides an overview of MagEIS electron observations during the late February and March 2013.
Figures 1a–1e show the corrected electron fluxes versus L* and time for five selected energies. One can

Figure 1. L* versus time spectrograms of MagEIS electron fluxes from five
selected energies taken by Van Allen Probe A during 24 February to 31
March 2013.
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clearly see that only Figures 1a–1c show the electron fluxes above background for L*< 3. Figure 1 also shows
the radiation belt response to the corotating interaction region-driven event on 1 March and the coronal
mass ejection-driven event on 17 March [Baker et al., 2014]. The low-energy electrons were transported across
the slot region to the inner zone during both storms. This is clearly seen for the 185 keV electrons in Figure 1a.
For both the 1 and 17 March events, the electron fluxes ≤200 keV were enhanced down to L* = 1.3. We note
that the effect from 1 March is hard to tell on the color spectrogram, but the expansion of the orange-red
profile from L*< 2.5 before to L*> 2.5 after 1 March is clear. See the supporting information for more details.
The inward transport of 592 keV electrons is clear in Figure 1b after 17 March. The ~737 keV electrons only
dipped slightly below L* = 2.75 following the 17 March event, and the slot region (2≤ L*≤ 3) remained
essentially empty of ≥894 keV electrons during the whole period of Figure 1. The MagEIS sensors on Van Allen
Probe B observed the same features (see supporting information).

We used the quiet period from 24 February to 1 March to accumulate the average electron fluxes in the inner
zone and lower slot region. This period was at the end of a long period of relatively quiet time following the
activity that occurred on 26 January (not shown). We carefully used only those Van Allen Probe orbits that
traversed the L* ≤ 2.5 region on trajectories that essentially remained at the magnetic equator. We then
selected only the 90° pitch angle fluxes to generate the data shown in Figures 2a and 2b. Figure 2c shows the
pitch angle distribution of 80 keV electrons during a perigee pass starting at L* = 4.54 at 00:00 UT on 24
February moving inbound, traversing the slot and inner zone regions twice, and then continuing outbound
beyond L* = 4.5. Note the low values of B/B0 for L*< 2.5 labeled at the bottom of Figure 2c. The corrected data
shown have no residual fluxes at small pitch angles in the inner zone region. Such residual fluxes are normally
observed when penetrating protons are present, causing amore or less isotropic response in the uncorrected
data (see supporting information). Figure 2c shows the success of the background subtraction algorithm,
referenced above, in removing the penetrating protons from the electron data. These corrected data were
used to obtain the electron spectra used throughout this paper.

Figure 2a shows the spectra of equatorially mirroring electrons for seven L* bins, each 0.2 Re wide. All the
spectra are fairly steeply falling for energies above 400 keV and flatten below 100 keV with the minimum

Figure 2. (a) MagEIS equatorially mirroring electron spectra for seven different L* values. (b) Comparison of the L* = 1.4–1.6
MagEIS spectrum to the different percentile spectra from AE9 and the AE8 MIN and MAX spectra. (c) Pitch angle spectrogram
of the 80 keV electron fluxes that were taken near the magnetic equator for L*< 2.5.
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fluxes, at the highest energies, being on the order of 0.1 el/(cm2 s sr keV) depending on the L* value. Only data
above background are shown. We should note that except for the L* ≥ 2 curves, the next energy points
beyond the highest energy points shown for 1.2 ≤ L* ≤ 2 in each spectrum had a value of 0, indicating that at
>900 keV, the electron flux was on the order of 10�1 el/(cm2 s sr keV) or less. For L* ≥ 2, there are points with
nonzero values in the 10�2 to 10�1 range. We take these points to be representative of theminimum possible
flux for those L*.

As an example, Figure 2b compares the MagEIS inner zone spectrum from the L* = 1.4–1.6 bin with the AE8
maximum and minimum spectra [Vette, 1991] plus several spectra taken from AE9 v1.2 [Ginet et al., 2013] at
different percentiles. This shows that AE8model fluxes exceed thosemeasured byMagEIS in the 700–900 keV
range. In fact, the MagEIS 890 keV point, connected by the dashed line, is only an upper limit estimate
[O’Brien and Claudepierre, 2015]. At 60–500 keV, the MagEIS flux levels closely match the AE9 75% curve but
are below the AE8 curves. We note that AE9 v2.1 was modified from v1.0 to include a steepening of the
electron spectra above 3MeV in recognition that such high-energy electrons were not consistent with
MagEIS observations in low-L* regions. AE-9 v2.1 and v1.0 are essentially the same for energies ≤3MeV at low
L*, and the 50% level clearly overestimates the fluxes above 500 keV and underestimates them below 300 keV
as shown in Figure 2b.

The data from Figure 2a were used to generate phase space densities (PSD) as a function of L* for a range of
constant first invariants, μ, as shown in Figure 3a. The PSD was calculated using the prescription in Chen et al.
[2005] and are in Geospace Environment Modeling units (c/MeV/cm)3, where c is the speed of light. These
PSD “radial” profiles are generally rising with increasing L*, signaling that the source of the particles is at
higher L* values. The μ ≥ 20 curves show signs of a flattening or slight peak in PSD near L* = 2. For comparison,
we show an equivalent PSD profile based on the AE9 50% spectra in Figure 3b. Like Figure 3a, these generally
show the rising profiles with increasing L*. They also show a flattening of the PSD profile in the same L*~2 and
μ ≥ 20 regions as do the MagEIS data. Careful examination of the MagEIS and AE9 profiles shows that the
MagEIS PSD for μ ≤ 20 is higher than the AE9 average values. The μ= 20 curve is essentially the dividing line
between the L* values, where for μ ≥ 20, the AE9 PSD are higher than the MagEIS values and smaller L* values
with μs< 20, where the MagEIS PSD values are higher than the AE9 values.

In Figure 4, we compare the MagEIS inner zone fluxes with the published CRRES fluxes [Abel et al., 1994, 1997].
Figure 4a shows a comparison of MagEIS equatorial spectra for L* = 1.35, 1.65, and 1.95 with the CRRES
equatorial spectra for L= 1.35, 1.65, and 1.95 (note that L*~L for these low values). Clearly, the MagEIS fluxes
are lower than the CRRES values, but in both cases, the spectra fall steeply for energies ≥500 keV with the

Figure 3. Phase space density (f ) versus L* radial profiles for several values of the first adiabatic invariant in MeV/G. (a) The
radial profiles observed by MagEIS. (b) The radial profiles from the AE9 quiet time average electron fluxes.
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MagEIS fluxes, orders of magnitude smaller than the CRRES fluxes at 800–900 keV. The MagEIS and CRRES
spectral shapes are quite similar. Figure 4b shows the electron flux versus L* (L for CRRES) at constant energy.
Again, the MagEIS fluxes are much lower than the CRRES fluxes, although the shapes are similar for the L*
range covered. The 900 and 1500 keV MagEIS fluxes are at background, as discussed above, so they were not
plotted in Figure 4b.

4. Discussion

These MagEIS measurements clearly show that there are no significant fluxes, >0.1/(cm2 s sr keV), of MeV
electrons in the inner radiation zone and lower edge of the slot region during the period studied. The MagEIS
measurements are borne out by Li et al.’s [2015] measurements at much higher energies. The obvious
question is whether this is a result of the limited activity levels that occurred during the late 2012 and early
2013 with the result that any >MeV fluxes had decayed away [Baker et al., 2007] or whether this condition
existed for the whole time period of the Van Allen Probe observations. As a reference, we note that during the
higher activity levels that existed during solar cycle 23, there were a few occasions, prior to 2008, where MeV
electrons penetrated into the slot region and inner zone [Fennell et al., 2012a, 2012b; Fennell and Roeder,
2010; Baker et al., 2004]. Limited observations from early Van Allen Probe data taken following the 30
September 2012 storm, during the commissioning phase for the MagEIS sensors, indicated that any electrons
present at ~1MeV were consistent with a background response in MagEIS, as far as we could tell given the
preliminary setup of the sensors [Fennell et al., 2012a, 2012b]. However, a more detailed reexamination of
those data showed that the >900 keV channels in both MagEIS M75 and HIGH spectrometers showed no
fluxes above the proton-generated background. By 6 October 2012, the MagEIS operational configuration
was sufficiently optimized that background subtractions could be made. Since that time and through the
period of the current study, there was no sign of>900 keV electrons, above the MagEIS background, in either
the inner zone or lower slot region. A preliminary examination of the data taken from March 2013 to
June 2014 shows the same lack of >900 keV electrons in these regions.

The flattening or peak in the PSD versus L* profiles near L*~2 may be related to the peak in the electron
flux versus L that Vampola and Gorney [1983] observed. They attributed the peak observed precipitating
flux to the effect of transmitters interacting with the electrons in the neighborhood of L= 2. However, there

Figure 4. Comparison of (a) MagEIS and CRRES inner radiation zone electron spectra and (b) fluxes versus L*. (Note that
L*~L at the low L* values is shown.)
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was no mention of a peak at large pitch angles, and one would not be expected from VLF transmitter
interactions. This flattening of the PSD profiles also indicates that if radial diffusion [Tomassian et al., 1972] is
the quiet time transport process in this region, the process has reached an equilibrium between the cross
L* transport rates and the losses from pitch angle diffusion and dE/dx (energy loss per unit distance traveled
in the medium) related energy diffusion. For L*< 1.6, the steepening radial gradients show the effect of
relatively rapid atmospheric losses, which dominate the processes there.

At ≤500 keV, there is considerable evidence that the electron decay rates are sufficiently high that no matter
how electrons are injected into regions of L*≤ 2, they will have decayed to a more or less equilibrium value
within days to weeks [Van Allen, 1966; West and Buck, 1976]. As noted above, there is no evidence of strong
injections into the L≤ 2 region, with energies >500 keV, during the Van Allen Probe mission up through early
March 2013. However, there were injections of ≤500 keV electrons observed in multiple cases. As noted above,
such injections were observed for both March 2013 storms (see supporting information). These lower energy
electron injections into the inner zone and slot region will be discussed in detail in a separate paper.

5. Conclusions

The Van Allen Probe MagEIS spectrometers do not observe significant fluxes of ≥MeV electrons in the
inner radiation zone or bottom side of the electron slot region. It will be important to continue to
examine these regions throughout the Van Allen Probe mission to determine whether this lack of MeV
electrons is the new normal or whether the mission time period is unique, as might be inferred from
solar cycle 23 results noted above. If it is the new normal, then the radiation belt empirical models and
the theoretical descriptions of the generation and maintenance of the inner zone electron fluxes will
have to be modified to explain this condition.
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