5 research outputs found

    Afrotheria genome; overestimation of genome size and distinct chromosome GC content revealed by flow karyotyping

    Get PDF
    AbstractAfrotheria genome size is reported to be over 50% larger than that of human, but we show that this is a gross overestimate. Although genome sequencing in Afrotheria is not complete, extensive homology with human has been revealed by chromosome painting. We provide new data on chromosome size and GC content in four Afrotherian species using flow karyotyping. Genome sizes are 4.13Gb in aardvark, 4.01Gb in African elephant, 3.69Gb in golden mole and 3.31Gb in manatee, whereas published results show a mean of 5.18Gb for Afrotheria. Genome GC content shows a negative correlation with size, indicating that this is due to differences in the amount of AT-rich sequences. Low genome GC content and small variance in chromosome GC content are characteristic of aardvark and elephant and may be associated with the high degree of conserved synteny, suggesting that these are features of the Afrotherian ancestral genome

    A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y

    Get PDF
    The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.National Science Foundation/[DBI-ABI 0965596]/NSF/Estados UnidosNational Science Foundation/[DBI-1356529]/NSF/Estados UnidosNational Science Foundation/[IIS-1453527]/NSF/Estados UnidosNational Science Foundation/[IIS-1421908]/NSF/Estados UnidosNational Science Foundation/[CCF-1439057]/NSF/Estados UnidosNational Institutes of Health/[1T32GM102057-0A1]/NIH/Estados UnidosUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en BiologĂ­a Celular y Molecular (CIBCM

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore