16,285 research outputs found
Shor's quantum factoring algorithm on a photonic chip
Shor's quantum factoring algorithm finds the prime factors of a large number
exponentially faster than any other known method a task that lies at the heart
of modern information security, particularly on the internet. This algorithm
requires a quantum computer a device which harnesses the `massive parallelism'
afforded by quantum superposition and entanglement of quantum bits (or qubits).
We report the demonstration of a compiled version of Shor's algorithm on an
integrated waveguide silica-on-silicon chip that guides four single-photon
qubits through the computation to factor 15.Comment: 2 pages, 1 figur
Uncovering anorexia nervosa in a biofeedback clinic for bowel dysfunction
Biofeedback is a conservative treatment based on behavioural techniques, which can be used in the management of bowel dysfunction. This article reports the results of a retrospective review of the clinical notes of 87 female patients attending a biofeedback service at St Mark's Hospital, Harrow. The initial review was conducted to examine the incidence of polycystic ovary syndrome (PCOS) in patients attending this service. Seven percent were found to have PCOS, which is within the normal range. However, a significant proportion of patients (11.5%) had a current history of anorexia nervosa, a higher rate than in the general population, which prompted further investigation. In this article, Sonya Chelvanayagam, Julie Duncan, Brigitte Collins and Lorraine O'Brien report on the results of this review and discuss the significance of its findings. © Copyright Terms & conditions
The entanglement beam splitter: a quantum-dot spin in a double-sided optical microcavity
We propose an entanglement beam splitter (EBS) using a quantum-dot spin in a
double-sided optical microcavity. In contrast to the conventional optical beam
splitter, the EBS can directly split a photon-spin product state into two
constituent entangled states via transmission and reflection with high fidelity
and high efficiency (up to 100 percent). This device is based on giant optical
circular birefringence induced by a single spin as a result of cavity quantum
electrodynamics and the spin selection rule of trion transition (Pauli
blocking). The EBS is robust and it is immune to the fine structure splitting
in a realistic quantum dot. This quantum device can be used for
deterministically creating photon-spin, photon-photon and spin-spin
entanglement as well as a single-shot quantum non-demolition measurement of a
single spin. Therefore, the EBS can find wide applications in quantum
information science and technology.Comment: 7 pages, 5 figure
Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies
Acknowledgements We thank Craig Lambert for his help in processing the MRS data. The study was funded by the Sir Jules Thorn Charitable Trust (grant ref: 05/JTA) and was supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre and the Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University and the NIHR Biomedical Research Centre and Biomedical Research Unit in Dementia based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge.Peer reviewedPublisher PD
A Buffer Stocks Model for Stabilizing Price of Staple Food with Considering the Expectation of Non Speculative Wholesaler
This paper is a study of price stabilization in the
staple food distribution system. All stakeholders experience
market risks due to some possibility causes of price volatility.
Many models of price stabilization had been developed by
employing several approaches such as floor-ceiling prices,
buffer funds, export or import taxes, and subsidies. In the
previous researches, the models were expanded to increase the
purchasing price for producer and decrease the selling price
for consumer. Therefore, the policy can influence the losses for
non-speculative wholesaler that is reflected by the descending
of selling quantity and ascending of the stocks. The objective of
this model is not only to keep the expectation of both producer
and consumer, but also to protect non-speculative wholesaler
from the undesirable result of the stabilization policy. A
nonlinear programming model was addressed to determine the
instruments of intervention program. Moreover, the result
shows that the wholesaler behavior affects the intervention
costs.
Index Terms Buffer stocks, Price stabilization, Nonlinear
programming, Wholesaler behavior
Direct dialling of Haar random unitary matrices
Random unitary matrices find a number of applications in quantum information
science, and are central to the recently defined boson sampling algorithm for
photons in linear optics. We describe an operationally simple method to
directly implement Haar random unitary matrices in optical circuits, with no
requirement for prior or explicit matrix calculations. Our physically-motivated
and compact representation directly maps independent probability density
functions for parameters in Haar random unitary matrices, to optical circuit
components. We go on to extend the results to the case of random unitaries for
qubits
The Distance to Nova V959 Mon from VLA Imaging
Determining reliable distances to classical novae is a challenging but
crucial step in deriving their ejected masses and explosion energetics. Here we
combine radio expansion measurements from the Karl G. Jansky Very Large Array
with velocities derived from optical spectra to estimate an expansion parallax
for nova V959 Mon, the first nova discovered through its gamma-ray emission. We
spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different
imaging epochs. The first five epochs cover the expansion of the ejecta from
2012 October to 2013 January, while the final four epochs span 2014 February to
2014 May. These observations correspond to days 126 through 199 and days 615
through 703 after the first detection of the nova. The images clearly show a
non-spherical ejecta geometry. Utilizing ejecta velocities derived from 3D
modelling of optical spectroscopy, the radio expansion implies a distance
between 0.9 +/- 0.2 and 2.2 +/- 0.4 kpc, with a most probable distance of 1.4
+/- 0.4 kpc. This distance implies a gamma-ray luminosity much less than the
prototype gamma-ray-detected nova, V407 Cyg, possibly due to the lack of a red
giant companion in the V959 Mon system. V959 Mon also has a much lower
gamma-ray luminosity than other classical novae detected in gamma-rays to date,
indicating a range of at least a factor of 10 in the gamma-ray luminosities for
these explosions.Comment: 11 pages, 8 figures, 3 tables, submitted to ApJ 2015-01-21, under
revie
Optical Quantum Computing
In 2001 all-optical quantum computing became feasible with the discovery that
scalable quantum computing is possible using only single photon sources, linear
optical elements, and single photon detectors. Although it was in principle
scalable, the massive resource overhead made the scheme practically daunting.
However, several simplifications were followed by proof-of-principle
demonstrations, and recent approaches based on cluster states or error encoding
have dramatically reduced this worrying resource overhead, making an
all-optical architecture a serious contender for the ultimate goal of a
large-scale quantum computer. Key challenges will be the realization of
high-efficiency sources of indistinguishable single photons, low-loss, scalable
optical circuits, high efficiency single photon detectors, and low-loss
interfacing of these components.Comment: 5 pages, 4 figure
Effect of Loss on Multiplexed Single-Photon Sources
An on-demand single-photon source is a key requirement for scaling many
optical quantum technologies. A promising approach to realize an on-demand
single-photon source is to multiplex an array of heralded single-photon sources
using an active optical switching network. However, the performance of
multiplexed sources is degraded by photon loss in the optical components and
the non-unit detection efficiency of the heralding detectors. We provide a
theoretical description of a general multiplexed single-photon source with
lossy components and derive expressions for the output probabilities of
single-photon emission and multi-photon contamination. We apply these
expressions to three specific multiplexing source architectures and consider
their tradeoffs in design and performance. To assess the effect of lossy
components on near- and long-term experimental goals, we simulate the
multiplexed sources when used for many-photon state generation under various
amounts of component loss. We find that with a multiplexed source composed of
switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors,
a single-photon source capable of efficiently producing 20-40 photon states
with low multi-photon contamination is possible, offering the possibility of
unlocking new classes of experiments and technologies.Comment: Journal versio
- âŠ