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Abstract
Randomunitarymatricesfind a number of applications in quantum information science, and are
central to the recently defined boson sampling algorithm for photons in linear optics.We describe an
operationally simplemethod to directly implementHaar randomunitarymatrices in optical circuits,
with no requirement for prior or explicitmatrix calculations. Our physicallymotivated and compact
representation directlymaps independent probability density functions for parameters inHaar
randomunitarymatrices, to optical circuit components.We go on to extend the results to the case of
randomunitaries for qubits.

The development of the boson sampling problem [1–5] hasmotivated fresh interest in studyingHaar random
unitarymatrices (HRUs) [6] realisedwith optical circuits to act onmultiphoton states. Simultaneously,
developments in integrated optics [7–15]now facilitate the construction of large-scale optical circuits capable of
actively realising any unitary operator [16] includingHRUs. Furthermore, HRUs play an important role in
various tasks for quantum cryptography [17] and quantum information protocols [18, 19], as well as the
construction of algorithms [20].

Here we present a simple procedure for choosing aHRUon an optical circuit, implemented in terms of
recursive decompositions of a unitary operator [21, 22], by choosing values of the physical parameters
independently from simple distributions. This procedure is useful for applications where the exact unitary
description of the implemented circuit is less important than a guarantee that it is drawn from the correct
distribution.While similar parameterisations exist in themathematical literature [23], an operational
applicationwithin linear optics is not widely appreciated.We extend the result to systems of qubits, by deriving a
mapping between a linear-optical circuit on =m 2n modes and a circuit operating on n qubits. Note that
constructions for pseudo-HRUs on qudit and qubit systems are also available, serving as a general framework to
investigate randomising operations in complex quantummany-body systems [24, 25].

Choosing aHRU is analogous to choosing a randomnumber from a uniformdistribution, in that it should
be unbiased. The probability of selecting a particular unitarymatrix from some region in the space of all unitary
matrices should be in direct proportion to the volume of the region as defined by theHaarmeasure, which is the
unique translation-invariantmeasure on the space of unitarymatrices. As argued in [26], the columns of anm-
dimensionalHRUmay bemade up from vectors = ¼v v v v, , ,i m1 2{ } { } that are successively drawn from the
unbiased distribution of unit vectors in the subspace of - +m i 1( ) dimensions, orthogonal to all previous
vectors. The problemof choosingHRUs thus reduces to the problemof recursively choosing such a set of
orthogonal vectors.

Aswewill show, this approach is particularly relevant to recursive circuit decompositions that allow any
unitarymatrix to be implemented overm opticalmodes, by choosing appropriate values for beamsplitter
reflectivities and phase shifters.Wefirst consider the triangular scheme [16] shown infigures 1, 2(a), which is a
variant of that proposed by Reck et al [21], andwhich represents anm×m unitarymatrixU as a product of
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unitary operators labelled Rn, =  =
-

-U Ri
m

m i0
1 4. Each block Rn is chosen to transform themode = -j m n,

or the corresponding basis state, denoted by Y ñ-m n∣ , into the n-dimensional unit vector ñvn∣ , overmodes

= -j m n to = -k m 1, i.e.

Figure 1.Recursive decomposition of a unitary in the triangular scheme. (a)An ´m m unitary transformation can be factored as a
product ofm unitary transformations Ri, each acting on a successively larger subspace (the subscripts 0,..., -m 1on the left label the
modes of the transformation). (b)A linear optical Rm can be constructed from a cascade of beamsplitters and phase shifts on optical
modes. Both theCartesian basis, x and the physical basis, r are illustrated.

Figure 2.Direct dialling of aHRU in a triangular linear optical circuit. (a)A ´6 6 unitary operator implementedwith a triangular six
mode linear optical circuit. (b)The pdfs fromwhich beamsplitter reflectivities should be chosen to directly implement aHRU. Those
on higher rows are chosen according to polynomials with increasing bias towards lower reflectivities. (c)Avariable reflectivity
beamsplitter can be effectively implementedwith anMZI composed of a phase shift, θ between two 1/2 reflectivity beamsplitters. The
MZI phasesmay be chosen directly from the distributions shown, with increasing bias towards q p= . The integrated optics
implementationwith directional couplers results in a bias towards q = 0. Line colours in (b) and (c) correspond to shading in (a).

4
Note that scheme realised in the integrated photonic chip of [16], inwhich each beamsplitter in every blockRn couples two adjacentmodes,

differs from the earlier proposal of [21], inwhich thefirstmode is consecutively coupledwithmodes n2, 3 ,..., .

2
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ñ = Y ñ-v R . 1n n m n∣ ∣ ( )

This vector undergoes further transformations under subsequent blocks Ri ( <n i m) tofinally produce ñfn∣
that occupies allmmodes:

ñ = ñ+f R R v . 2n m n n1∣ ∣ ( )

Orthogonality between each of them ñfi∣ vectors is guaranteed. Further, if the vector ñvn∣ is chosen from the
unbiased distribution of unit vectors in n-dimensions, the property of left invariance ensures that ñfn∣ does not
become biased by the operation of the subsequent Ri.

The next andmain task is therefore determining how an unbiased vector in n-dimensionsmay be
implementedwith Rn by choosing values for the linear optical components fromwhich it is constructed,
according to the expansion shown infigure 1(b). To achieve this, consider the complexGaussian vector in
n-dimensions:

å åtñ = Yñ = Yña

=

-

=

-

zv e , 3n
i

n

i i
i

n

i i
0

1

0

1
i i∣ ∣ ∣ ( )

where Yñi∣ denotes the ith basis state and the zi are independent and identically distributed normal random
variables with the probability density function (pdf),  p= -z z1 expz

2
i
( ) ( ∣ ∣ ). This independencemeans that

the pdf for vn is the product of the pdfs for these elements and depends only on themagnitude of the vector:


p p

= =- + + + --x
1

e
1

e , 4
n

x x x
nv

v
n

n n0 1 1
2( ) ( )( ) ∣ ∣

where =x zi i
2∣ ∣ .We now showhow this basisx, whichwe call the Cartesian basis, can bemapped to a new

basis,r.We call the latter the physical basis, since, as we demonstrate below, it contains the variables
corresponding directly to components in a physical realisation of the vector in linear optics. Namely, we denote
by r0 the power of the input to the given blockRn, while the other ri stand for the reflectivities of beamsplitters
(see alsofigure 1(b)). Next, combining the definition (1) and equation (3), we find

= fz r re , 50
i

0 10 ( )

= - < -f
+

=

z r r r i ne 1 0 1, 6i i
k

i

k
i

0 1
1

i ( )

where thematrix (in the Pauli basis) s s= + -B r r r1z x( ) has been used to describe a beamsplitter as a
function of its reflectivity. Finally, taking into account that =x zi i

2∣ ∣ , we find

å=
=

-

r x , 7
k

n

k0
0

1

( )

=
å

< --

= -
-r
x

x
i n0 1, 8i

i

k i
n

k

1

1
1

( )

f a= . 9i i ( )

Wemust show that the pdfs for the vector vn are separable in the physical basis so that the experimental
parameters can be chosen independently.We also need to derive the formof themarginal distributions for the ri
and fi, fromwhich experimental parametersmust be chosen to obtain aHaar unitary. Since there is no
functional dependence on the ai parameters in equation (4) and there is a one-to-onemapping a fi i, these
phases can be chosen uniformly and independently from the interval p0, 2[ ).

Finding the pdfs for the beamsplitter reflectivities requires amore careful change in bases, using the Jacobian

 = Jr x x rdet , . 10v vn n( ) ( )∣ ( )∣ ( )

The pre-factor from (4) is expressed in the r basis simply as -rexp 0( ), so is trivially separable.We therefore
consider the Jacobianmatrix

=
¶
¶

J
x

r
x r, 11i j

i

j
, ( ) ( )

with

=x r r , 120 0 1 ( )

= - < -+
=

x r r r i n1 0 1. 13i i
k

i

k0 1
1

( ) ( )

For the four cases

= - =+
=

J r r j1 0, 14i j i
k

i

k, 1
1

( ) ( )

3

New J. Phys. 19 (2017) 033007 N JRussell et al



=
-

-
- <+

=

J
r r

r
r j i

1
1 0 , 15i j

i

j k

i

k,
0 1

1

( ) ( )

= - = +
=

J r r j i1 1, 16i j
k

i

k, 0
1

( ) ( )

= > +J j i0 1, 17i j, ( )

where the variable =r 1n has been introduced for convenience.
We show that this formofmatrix (lowerHessenberg) can always be transformed into a lower triangular

matrix—for which the determinant is simply the product of the diagonal elements—by elementary operations,
which do not change the absolute value of the determinant.

Thefirst step is to perform a set of operations on the j = 0 column, c0, that set the upper -n 1 terms to
zero, as follows:

= -- -
-

-

J

J
c c c , 18k k

k
k
k

k k
0 0

1 1,0
1

1,

( )( ) ( )
( )

where k runs from1 to -m 1, c k
0
( ) and Jk

k
,0

( ) are those quantities after k operations, and ck is the kth column.We
can then place the column c0 as the rightmost column, at which point thematrix is lower triangular. After the
procedure is complete the element =-J 1n0, 1 (see appendix for detailed proof).

The Jacobian determinant is given bymultiplying the diagonal elements of the shiftedmatrix

= ¢
=

-

Jx rdetJ , 19
i

n

i i
1

1

,( ) ( )

which are given by equation (16). The explicit formof the pdf in the r basis is

 = -- -

=

-
- -r rr e 1 , 20r n

k

n

k
n k

v 0
1

1

1
1

n
0( ) ( ) ( )

which ismanifestly separable.
It can be verified by explicit integration that this expression is appropriately normalised. Since the pdf is

separable in this basis, the variables ri are independent, and can be chosen according to theirmarginal
distributions

 = - - <- -r n i r i n1 1 , 21r
n i 1

n i, ( ) ( )( ) ( )

where, for clarity, rn i, denotes the reflectivity of the ith beamsplitter in the nth rotation, Rn.We now integrate
over r0 to obtain a compact form for the pdf of n-dimensional unit vectors

 = - -
=

-
- -n rr 1 1 22v

k

n

n k
n k

1

1

,
1

n( ) ( )! ( ) ( )

and express the pdf for the full circuit of beamsplitters,  rC( ) as the product of the pdfs for the diagonal arrays of
beamsplitters:

⎡
⎣⎢

⎤
⎦⎥  = - -

= =

-
- -j rr 1 1 . 23

j

m

k

j

j k
j k

C
1 1

1

,
1( ) ( )! ( ) ( )

Recalling the beamsplitter transformation s s= + -B r r r1z x( ) , we note that a variable reflectivity
beamsplitter can be constructed as aMach–Zehnder interferometer (MZI), from a variable phase shifter θ

between two 1/2 reflectivity beamsplitters, =H B 1 2( ), to give q s= +q qB Icos i sinv x2 2
( ) (up to a global

phase). It is then useful to re-express the pdfs in terms ofMZI phase shifts. The further change of variables,

= qr cos2
2
, gives

⎡
⎣⎢

⎤
⎦⎥ q

q q
= -q

- -
n i cos

2
sin

2
. 24

n i
B

2 1

i
( ) ( ) ( )

( )

In the setting of integrated optics, where beamsplitters are implementedwith directional couplers onwaveguides
according to s= +D I1 2 i x

1

2
( ) ( ) for reflectivity of 1/2, the pdfs are given by (24) butwith sin and cos

functions interchanged, i.e.

⎡
⎣⎢

⎤
⎦⎥ q

q q
= -q

- -
n i sin

2
cos

2
. 25

n i
D

2 1

i
( ) ( ) ( )

( )

In practical terms, an optical circuit composed of beamsplitters and variable phase shifters can directly dial
up a configuration corresponding to aHRU, by choosing phase shifter values from the derived pdfs. A sixmode
example is given infigure 2.

4

New J. Phys. 19 (2017) 033007 N JRussell et al



Wenote that the versionof the triangular schemeused here, inwhich each beamsplitter in every blockRn

couples twoadjacentmodes, differs from theoriginal scheme [21], inwhich thefirstmode is consecutively coupled
withmodes ¼ n2, 3, , . It is easy to check, however, that themapping (7)–(9) canbe applied to theoriginal scheme
aswell, by replacing rwith - r1 and relabelling the outputmodes: x x, ,...,0 1{ - -x xm m1 1} { , -x x,..., m0 2}.
Such a change of variables doesnot affect the Jacobian determinant and thefinal expression for the reflectivity pdfs
for theoriginal scheme is obtainedby replacing rwith - r1 in equation (21) (the phases are again chosen
uniformly and independently from the interval p0, 2[ )).

Next, we analyse the alternative decomposition of unitarymatrices, proposed byClements et al [22], which
corresponds to a rectangularmesh of beamsplitters and phase shifters, as shown in figure 3 for sixmodes.While
the triangular schememight bemore resilient to loss and other errors in experiments inwhich only a small
proportion of its (upper) input ports are accessed, the rectangular scheme is likely to be beneficial for
experiments that involve accessingmost of its inputs. Themore compact rectangular schememay alsofit a
greater number ofmodes on standardwafers used in the fabrication of integrated photonic circuits.

The rectangular schemeobeys the blocked structure, analogous to the triangular schemedescribed above. That
is, anm×munitarymatrixU canbewrittendownas a product of blocks Rn˜ (hereafter the tilde refers to the
decomposition of [22]). Each of these blocks, as previously, transforms themodem−n into a vector overmodesm
−nup to -m 1 (see alsofigure 1(b)).More precisely, for odd (even)m, =  = - =

-
-U R Rj

m
j i

m
m i1

2
2 1 0

2 1
2˜ ˜

( =  =
-

=
-

-U R Rj
m

j i
m

m i1
1 2

2 0
1 2

2˜ ˜( ) ( ) ).Moreover, themapping of equations (7)–(9) for the operator Rn for the

triangular scheme canbeused for Rn˜ aswell, by a simple substitution.Namely, for even (odd)mwe replace rn i,˜ by
rn s i, ( ), " i, where s is a sequence of -n 1 indices, with odd (even)numbers arranged indescending order and
followed by even (odd)numbers, arranged in ascendingorder (e.g., for = =m n 6, wehave =s 5, 3, 1, 2, 4{ }).

This substitution leaves the corresponding Jacobian determinant unaffected. Therefore, the pdfs given in
equation (21) for reflectivities rn i, for the triangular scheme correspond to that of the rectangular scheme, but for

rn s i,˜ ( ). In other words,  =r rr rn i n s i, ,
( ) ˜ ( )˜ ( ) . Subsequently, wefind

 = - - - -r n s i r1 . 26r
n s i 1

n i,
˜ (˜) [ ( )]( ˜) ( )˜

( )

Alternatively, one can reorder the reflectivities rn i,˜ according to the sequence s, as is done infigure 3, yielding
 =r rr rn i n i, ,

( ) ˜ ( )˜ . Finally, the phases of the rectangular scheme, analogous to the triangular scheme, are chosen
uniformly and independently from the interval p0, 2[ ).

Given the above parameterisation ofHaar-randomoptical circuits, we now address the effects of errors,
caused by imperfections in integrated photonicsmanufacturing. Before going into detail, we emphasise the
important feature of our approach: due to the separability of the derived probability distributions, errors on a
given component of the circuit do not propagate to other independently chosen parameters. In turn, amajor
source of individual errors is the imperfection of directional couplers. Used to implement the balanced
beamsplitters ofMZIs, directional couplers should ideally couple 1/2 of the light betweenwaveguides so that
eachMZI can achieve the full reflectivity range. Fabrication tolerances, however, introduce errors and
limitations on this range. Furthermore, we note that upperMZIs in the triangular scheme and centralMZIs in
the rectangular scheme are thosemost sensitive to errors, according to their polynomially growing pdfs.

Although schemes exist tominimise the effect of such errors and produce near perfectMZIs [27, 28] it is
worthwhile considering the influence ofmany small errors over a large circuit (this simplemodel is also useful to
the qubit picture thatwe develop below). As an estimate to this effect we address the range of unitary operations
covered by the proposed parameterisation, whichwe evaluate in terms of the coverage of the unitary space (see

Figure 3.A6×6 unitary operator implementedwith a six-mode linear optical circuit according to the rectangular scheme.Here, rn i,˜
stands for the reflectivity of the ith beamsplitter of the block Rn˜ .Within each Rn˜ ( =n 2,..., 6), we enumerate the beamsplitters
according to the sequence s, which consists of -n 1 indices, with odd (even)numbers arranged in descending order and followed by
even (odd)numbers, arranged in ascending order (see alsomain text). In thisfigure, the beamsplitters in the ith rowmix themodes
-i 1 and i (e.g., the beamsplitters of the third row, r4,3˜ , r6,1˜ and r5,2˜ , couple themodes 2 and 3).

5
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[23, 29] formore details)

ò

ò
=

 
e

e
= =

- -
r

U

r
cov

d

d
. 27m

n
m

i
n

n i v

U

2 1
1 1

, n( )
( )∣ ∣

∣ ∣

That is, covm is the ratio between the reachable and full unitary spaces, assuming that the phase shifters cover
their full range p0, 2[ ). The range ofMZI reflectivities, in turn, is e e-, 1[∣ ∣ ∣ ∣], where ε is a small random error.
Infigure 4we plot the coverage versus the circuit sizem, which shows that for suchmoderate errors our
parameterisation achieves high coverage rates. Since the pdfs for the triangular and rectangular schemes have
been shown to be equivalent and independent, the coverage plotted infigure 4 is valid for both.

We now briefly show how these resultsmay be extended to the scenario of quantum information
processing with qubits, independently of any particular physical implementation.We suggest amapping
between a unitary operation on =m 2p opticalmodes and the same unitary operation on p qubits, such that
the pdfs derived above can be directly applied to systems of qubits. Labelling the optical modes as qubit basis
states ñ ñ ñ ñ0 ... 00 , 0 ... 01 , 0 ... 10 ,..., 1 ... 11{∣ ∣ ∣ ∣ }wemap the optical beamsplitters and phase shifters to single
qubit Hadamard gates, and n-qubit logic gates where the state of a single target qubit is transformed
depending on the states of -n 1 control qubits. The target qubit operations are theNOT gate or qubit-flip
operator, sx, and the qubit-phase gates, F = fsei z and s sF = Fx x. Each optical phase ismapped to a n-qubit
Φ or F logic gate, and each optical beamsplitter ismapped as anMZI to a n-qubitΦ or F logic gate between
two single qubit Hadamard gates on the respective target qubit.

Themapping can be understoodwith reference tofigure 5, which explicitly details the case for 3 qubits and 8
opticalmodes and present a full circuit example for 2 qubits and 4 opticalmodes. The target for the n-qubit
phase operations is always the final qubit; the conditioning configuration of the control qubits determines which
element in the qubit space receives the phase. The addition ofHadamard operations on the final qubit allows the
mapping of 1/2 reflectivity beamsplitters, and thereforeMZIs, that operate between pairs of opticalmodes that
differ in labelling only by the final bit. The further addition of n-qubit NOTgates allowsMZIs to bemapped
frompairs of opticalmodes thatmay differ in labelling bymore than one bit. Any subset of theMZI operations
may be implemented on qubits by simply omitting controlled phases where appropriate.

While not designed to be optimal, this one-to-onemapping between n-qubit phase gates and opticalMZIs
illustrates oneway inwhich the distributions expressed infigure 2(c)may be used to directly implement aHRU
on qubits.

We have presented a recipe to directly generateHRUs in linear optics with a proof that is straightforward in
comparison to previousworks [6, 23]. Experimental conformation of these results canmake use of tomography
that does not require further optical circuitry [30]. The formula in its general form is applicable to boson
samplingwhereHaar unitaries are required, and the extension to systems of qubits invites wider applications.

Figure 4.Coverage covm of the unitary space versus the circuit sizem. The phase shifters are assumed to cover their full range p0, 2[ ),
while the range of reflectivities is restricted to e e-, 1[∣ ∣ ∣ ∣], where randomerrors ε are drawn from a zero-mean normal distribution.
The curves correspond to different variancesσ of the errors (s = ´ -1, 5, 10, 20 10 4{ } from the upper to the bottom curve). For
eachm, the coverage is averaged overmany realisations of ε.
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Appendix. Converting a lowerHessenbergmatrix to a lower triangularmatrix

We set =-J 0k
k

1,0 with columnoperations by subtracting column ck multiplied by an appropriate scalar:

= -- -
-

-

J

J
c c c . A.1k k

k
k
k

k k
0 0

1 1,0
1

1,

( )( ) ( )
( )

The effect on all the other elements of c0 is to remove the dependence on rk, whichwe can prove inductively.
Suppose that after k such operations, the upper k elements of c0 have been set to zero and the remaining

elements have no dependence on rl for  l k0 .We can express the elements of c k
0
( ) as:

⎧
⎨⎪

⎩⎪
=

-

<

+
= +J

r r i k

i k

1 , ,

0, .

A.2i
k i

l k

i

l
,0

1
1

( ) ( )( )

The base case is k=0, where the expression in (14) corresponds to this general form.Wenowperform the
+k 1 th( ) operation on all non-zero rows (i.e.  +i k 1):

Figure 5.Mapping a linear optical circuit to a unitary on qubits. An empty or solid circle indicates that the operation is conditional on
the ‘0’ or ‘1’ state of the control qubit, respectively. (a)A2-qubit and 4 opticalmode example. (b)–(d) the elementary operations for a 3
qubit (8 opticalmode) unitary. (b)Phase shifts on single elements in the qubit space result from a judicious choice of conditions for
the control qubits. (c)The addition ofHadamard gates allows beamsplitter operations to be implemented on elements in the qubit
space that differ only in the state of thefinal qubit. (d)The further addition of n-qubit-NOT gates allows themapping of beamsplitters
for elements thatmay differ in the state ofmore than one qubit.
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We recover the expression in (A.2), thus proving the result. After -n 1 iterations, wefind that = =-
-J r 1n

n
n1,0

1 ,
recalling that =r 1n was a variable introduced for convenience.
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