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Abstract

Random unitary matrices find a number of applications in quantum information science, and are
central to the recently defined boson sampling algorithm for photons in linear optics. We describe an
operationally simple method to directly implement Haar random unitary matrices in optical circuits,
with no requirement for prior or explicit matrix calculations. Our physically motivated and compact
representation directly maps independent probability density functions for parameters in Haar
random unitary matrices, to optical circuit components. We go on to extend the results to the case of
random unitaries for qubits.

The development of the boson sampling problem [ 1-5] has motivated fresh interest in studying Haar random
unitary matrices (HRUs) [6] realised with optical circuits to act on multiphoton states. Simultaneously,
developments in integrated optics [7—15] now facilitate the construction of large-scale optical circuits capable of
actively realising any unitary operator [16] including HRUs. Furthermore, HRUs play an important role in
various tasks for quantum cryptography [17] and quantum information protocols [18, 19], as well as the
construction of algorithms [20].

Here we present a simple procedure for choosinga HRU on an optical circuit, implemented in terms of
recursive decompositions of a unitary operator [21, 22], by choosing values of the physical parameters
independently from simple distributions. This procedure is useful for applications where the exact unitary
description of the implemented circuit is less important than a guarantee that it is drawn from the correct
distribution. While similar parameterisations exist in the mathematical literature [23], an operational
application within linear optics is not widely appreciated. We extend the result to systems of qubits, by deriving a
mapping between a linear-optical circuit on m = 2" modes and a circuit operating on # qubits. Note that
constructions for pseudo-HRUs on qudit and qubit systems are also available, serving as a general framework to
investigate randomising operations in complex quantum many-body systems [24, 25].

Choosing a HRU is analogous to choosing a random number from a uniform distribution, in that it should
be unbiased. The probability of selecting a particular unitary matrix from some region in the space of all unitary
matrices should be in direct proportion to the volume of the region as defined by the Haar measure, which is the
unique translation-invariant measure on the space of unitary matrices. As argued in [26], the columns of an m-
dimensional HRU may be made up from vectors {v;} = {v}, v,, ..., ,} thatare successively drawn from the
unbiased distribution of unit vectors in the subspace of (m — i + 1) dimensions, orthogonal to all previous
vectors. The problem of choosing HRUs thus reduces to the problem of recursively choosing such a set of
orthogonal vectors.

As we will show, this approach is particularly relevant to recursive circuit decompositions that allow any
unitary matrix to be implemented over m optical modes, by choosing appropriate values for beamsplitter
reflectivities and phase shifters. We first consider the triangular scheme [16] shown in figures 1, 2(a), which is a
variant of that proposed by Reck et al [21], and which represents an m X m unitary matrix U as a product of

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Recursive decomposition of a unitary in the triangular scheme. (a) An m X m unitary transformation can be factored as a
product of m unitary transformations R;, each acting on a successively larger subspace (the subscripts 0,..., m — 1 on the leftlabel the
modes of the transformation). (b) A linear optical R,, can be constructed from a cascade of beamsplitters and phase shifts on optical
modes. Both the Cartesian basis, X and the physical basis, r are illustrated.

0 1 r T 6

Figure 2. Direct dialling of a HRU in a triangular linear optical circuit. (a) A 6 x 6 unitary operator implemented with a triangular six
mode linear optical circuit. (b) The pdfs from which beamsplitter reflectivities should be chosen to directly implement a HRU. Those
on higher rows are chosen according to polynomials with increasing bias towards lower reflectivities. (c) A variable reflectivity
beamsplitter can be effectively implemented with an MZI composed of a phase shift, 6 between two 1/2 reflectivity beamsplitters. The
MZI phases may be chosen directly from the distributions shown, with increasing bias towards § = 7. The integrated optics
implementation with directional couplers results in a bias towards = 0. Line colours in (b) and (c) correspond to shading in (a).

unitary operators labelled R,,, U = H;-”:Ol R,,_; . Eachblock R, is chosen to transform the mode j = m — #,
or the corresponding basis state, denoted by | ¥, ,), into the n-dimensional unit vector |,), over modes
j=m—ntok=m — 1,ie.

4 Note that scheme realised in the integrated photonic chip of [16], in which each beamsplitter in every block R,, couples two adjacent modes,
differs from the earlier proposal of [21], in which the first mode is consecutively coupled with modes 2, 3 ,..., n.

2
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|Vn> = Rn |\Ijm7n>- (1)

This vector undergoes further transformations under subsequent blocks R; (n < i < m)to finally produce|f))
that occupies all 7n modes:

|f;1> = Ry -+ Ry |Vn>' 2

Orthogonality between each of the 1| ;) vectors is guaranteed. Further, if the vector |1;,) is chosen from the
unbiased distribution of unit vectors in #-dimensions, the property of left invariance ensures that | f,) does not
become biased by the operation of the subsequent R;.

The next and main task is therefore determining how an unbiased vector in n-dimensions may be
implemented with R, by choosing values for the linear optical components from which it is constructed,
according to the expansion shown in figure 1(b). To achieve this, consider the complex Gaussian vector in
n-dimensions:

n—1 n—1
Vo) = > zi |B) = > mel |I), (3
i=0 i=0

where | ) denotes the ith basis state and the z; are independent and identically distributed normal random
variables with the probability density function (pdf), P, (z) = 1/7 exp (—|z|*). This independence means that
the pdf for v, is the product of the pdfs for these elements and depends only on the magnitude of the vector:

R, (x) = Lef(x0+xl+"‘+xn—l) — Leflvnlz, (4)
" "

where x; = |z;|>. We now show how this basis X, which we call the Cartesian basis, can be mapped to a new

basis, r. We call the latter the physical basis, since, as we demonstrate below, it contains the variables

corresponding directly to components in a physical realisation of the vector in linear optics. Namely, we denote

by r, the power of the input to the given block R,,, while the other r; stand for the reflectivities of beamsplitters

(see also figure 1(b)). Next, combining the definition (1) and equation (3), we find
zg = €% Jrn, ©)

i
Zi:€i¢51/roﬁ+1 H \/1 — Tk 0<1<1’l— 1, (6)
k=1

where the matrix (in the Pauli basis) B(r) = /70, + +/1 — roy, has been used to describe a beamsplitter as a
function of its reflectivity. Finally, taking into account that x; = |z;|?, we find

n—1
o = Zxk: (7)
k=0
Xi—1 .
= —— 0<ig<n—1, (8)
Z'Z:lek
¢i = Q. ©)]

We must show that the pdfs for the vector v, are separable in the physical basis so that the experimental
parameters can be chosen independently. We also need to derive the form of the marginal distributions for the r;
and ¢, from which experimental parameters must be chosen to obtain a Haar unitary. Since there is no
functional dependence on the «; parameters in equation (4) and there is a one-to-one mapping a; — ¢,, these
phases can be chosen uniformly and independently from the interval [0, 27).

Finding the pdfs for the beamsplitter reflectivities requires a more careful change in bases, using the Jacobian

R, (@) = R, (x)|det] (x, D). (10)

The pre-factor from (4) is expressed in the r basis simply as exp (—1), so is trivially separable. We therefore
consider the Jacobian matrix

Ox;
Jij(x, 1) = — (11)
(91’1‘
with
Xo =1 1, (12)
i
xi:ror;+1H(l—rk) o<ig<n—1 (13)
k=1
For the four cases
i
Ji=tia[[ O —=m) j=0, (14)
k=1

3
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—nfi .
]i,j:%n (I —rp) 0<j<i, (15)
— T k=1
Jj=n]] 0 —r) j=i+1, (16)
k=1
Jij=0 j>i+1, (17)

where the variable 7, = 1has been introduced for convenience.

We show that this form of matrix (lower Hessenberg) can always be transformed into a lower triangular
matrix—for which the determinant is simply the product of the diagonal elements—by elementary operations,
which do not change the absolute value of the determinant.

The first step is to perform a set of operations on the j = 0 column, ¢, that set the upper n — 1terms to
zero, as follows:

(k=1)
cg‘) = cg"l) — ckﬂ, (18)
Je—1k
where krunsfrom1tom — 1, cg‘) and J ,ﬁko) are those quantities after k operations, and ¢y is the kth column. We
can then place the column ¢ as the rightmost column, at which point the matrix is lower triangular. After the
procedure is complete the element Jy ,_1 = 1(see appendix for detailed proof).
The Jacobian determinant is given by multiplying the diagonal elements of the shifted matrix

n—1
dety(x, 1) = [ Ji; (19)
i=1
which are given by equation (16). The explicit form of the pdf in the r basis is
n—1
R, @) =e oy [ (= n)F, (20)
k=1

which is manifestly separable.

It can be verified by explicit integration that this expression is appropriately normalised. Since the pdfis
separable in this basis, the variables r; are independent, and can be chosen according to their marginal
distributions

B =D —rr =t 1<i<n, @)

where, for clarity, r, ; denotes the reflectivity of the ith beamsplitter in the nth rotation, R,,. We now integrate
over 1, to obtain a compact form for the pdf of #n-dimensional unit vectors

n—1
P = — D' Q= np ! (22)

k=1
and express the pdf for the full circuit of beamsplitters, Pc(r) as the product of the pdfs for the diagonal arrays of

beamsplitters:
m j—1 )
Per) =[] [(j D] a- rj,k)]k1:|- (23)
=1 k=1

Recalling the beamsplitter transformation B(r) = 7o, 4+ /1 — ra,, we note that a variable reflectivity
beamsplitter can be constructed as a Mach—Zehnder interferometer (MZI), from a variable phase shifter 6
between two 1/2 reflectivity beamsplitters, H = B(1/2), to give B, (#) = cos gl +1isin %O’x (up toaglobal
phase). It is then useful to re-express the pdfs in terms of MZI phase shifts. The further change of variables,

r = cos® g, gives

B NSA PN
Py (0) = (n — i)cos E[sm 5] . (24)

In the setting of integrated optics, where beamsplitters are implemented with directional couplers on waveguides
accordingto D(1/2) = % (I + ioy) for reflectivity of 1/2, the pdfs are given by (24) but with sin and cos
functions interchanged, i.e.

b ] 2(n—i)—1
Pg(0) =(n—1) smz[cos 5] . (25)

In practical terms, an optical circuit composed of beamsplitters and variable phase shifters can directly dial
up a configuration corresponding to a HRU, by choosing phase shifter values from the derived pdfs. A six mode
example is given in figure 2.
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Figure3. A6 x 6 unitary operator implemented with a six-mode linear optical circuit according to the rectangular scheme. Here, 7, ;
stands for the reflectivity of the ith beamsplitter of the block R,,. Within each R,, (n = 2,..., 6), we enumerate the beamsplitters
according to the sequence s, which consists of # — 1 indices, with odd (even) numbers arranged in descending order and followed by
even (odd) numbers, arranged in ascending order (see also main text). In this figure, the beamsplitters in the ith row mix the modes

i — landi(e.g., the beamsplitters of the third row, 7y 3, 75 and 7 », couple the modes 2 and 3).

We note that the version of the triangular scheme used here, in which each beamsplitter in every block R,
couples two adjacent modes, differs from the original scheme [21], in which the first mode is consecutively coupled
with modes 2, 3,...,n.Itis easy to check, however, that the mapping (7)—(9) can be applied to the original scheme
aswell, by replacing rwith 1 — r and relabelling the output modes: {x¢, Xp,..., Xi—1} — {Xm—1 Xo5eer X—2}-
Such a change of variables does not affect the Jacobian determinant and the final expression for the reflectivity pdfs
for the original scheme is obtained by replacing rwith 1 — r in equation (21) (the phases are again chosen
uniformly and independently from the interval [0, 27)).

Next, we analyse the alternative decomposition of unitary matrices, proposed by Clements et al [22], which
corresponds to a rectangular mesh of beamsplitters and phase shifters, as shown in figure 3 for six modes. While
the triangular scheme might be more resilient to loss and other errors in experiments in which only a small
proportion of its (upper) input ports are accessed, the rectangular scheme is likely to be beneficial for
experiments that involve accessing most of its inputs. The more compact rectangular scheme may also fita
greater number of modes on standard wafers used in the fabrication of integrated photonic circuits.

The rectangular scheme obeys the blocked structure, analogous to the triangular scheme described above. That
is, an 7 x m unitary matrix U can be written down as a product of blocks R,, (hereafter the tilde refers to the
decomposition of [22]). Each of these blocks, as previously, transforms the mode m — 1 into a vector over modes m
—nuptom — 1(seealso figure 1(b)). More precisely, for odd (even) m, U = HT:/ 12 ﬁzj, 1 Hlm:/oz_l R o
U = HE’ZI h/2 ﬁzj HSZ; h/2 R,,_2). Moreover, the mapping of equations (7)—(9) for the operator R, for the
triangular scheme can be used for R,, as well, by a simple substitution. Namely, for even (odd) m we replace 7, ; by
Tus(iy V I, Wheresisasequence of n — 1indices, with odd (even) numbers arranged in descending order and
followed by even (odd) numbers, arranged in ascending order (e.g., for m = n = 6,wehaves = {5, 3, 1, 2, 4}).

This substitution leaves the corresponding Jacobian determinant unaffected. Therefore, the pdfs given in
equation (21) for reflectivities 1, ; for the triangular scheme correspond to that of the rectangular scheme, but for
7,5 Inother words, B, (r) = P, (r). Subsequently, we find

Pr () = [n = s@]A = 7)1 26)

Alternatively, one can reorder the reflectivities 7, ; according to the sequence s, as is done in figure 3, yielding
B, (r) = P .(r). Finally, the phases of the rectangular scheme, analogous to the triangular scheme, are chosen
uniformly and independently from the interval [0, 27).

Given the above parameterisation of Haar-random optical circuits, we now address the effects of errors,
caused by imperfections in integrated photonics manufacturing. Before going into detail, we emphasise the
important feature of our approach: due to the separability of the derived probability distributions, errors on a
given component of the circuit do not propagate to other independently chosen parameters. In turn, a major
source of individual errors is the imperfection of directional couplers. Used to implement the balanced
beamsplitters of MZIs, directional couplers should ideally couple 1/2 of the light between waveguides so that
each MZI can achieve the full reflectivity range. Fabrication tolerances, however, introduce errors and
limitations on this range. Furthermore, we note that upper MZIs in the triangular scheme and central MZIs in
the rectangular scheme are those most sensitive to errors, according to their polynomially growing pdfs.

Although schemes exist to minimise the effect of such errors and produce near perfect MZIs [27, 28] it is
worthwhile considering the influence of many small errors over a large circuit (this simple model is also useful to
the qubit picture that we develop below). As an estimate to this effect we address the range of unitary operations
covered by the proposed parameterisation, which we evaluate in terms of the coverage of the unitary space (see
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Figure 4. Coverage cov,, of the unitary space versus the circuit size m. The phase shifters are assumed to cover their full range [0, 27),
while the range of reflectivities is restricted to [|], 1 — |¢|], where random errors € are drawn from a zero-mean normal distribution.
The curves correspond to different variances o of the errors (o = {1, 5, 10, 20} x 10~ from the upper to the bottom curve). For
each m, the coverage is averaged over many realisations of .

[23,29] for more details)

1—|e]

HT:Z H?;ll el dr,; P, (x)

fUdU

covy, =

(27)

That s, cov,, is the ratio between the reachable and full unitary spaces, assuming that the phase shifters cover
their full range [0, 27). The range of MZI reflectivities, in turn, is [|¢], 1 — ||], where € is a small random error.
In figure 4 we plot the coverage versus the circuit size m, which shows that for such moderate errors our
parameterisation achieves high coverage rates. Since the pdfs for the triangular and rectangular schemes have
been shown to be equivalent and independent, the coverage plotted in figure 4 is valid for both.

We now briefly show how these results may be extended to the scenario of quantum information
processing with qubits, independently of any particular physical implementation. We suggest a mapping
between a unitary operation on m = 2 optical modes and the same unitary operation on p qubits, such that
the pdfs derived above can be directly applied to systems of qubits. Labelling the optical modes as qubit basis
states {|0 ... 00), [0...01), ]0...10),..., |1 ... 11) } we map the optical beamsplitters and phase shifters to single
qubit Hadamard gates, and n-qubit logic gates where the state of a single target qubit is transformed
depending on the states of n — 1 control qubits. The target qubit operations are the NOT gate or qubit-flip
operator, dy, and the qubit-phase gates, ® = ¢! and ® = 0, Poy. Each optical phase is mapped to a n-qubit
® or ® logic gate, and each optical beamsplitter is mapped as an MZI to a n-qubit ® or ® logic gate between
two single qubit Hadamard gates on the respective target qubit.

The mapping can be understood with reference to figure 5, which explicitly details the case for 3 qubits and 8
optical modes and present a full circuit example for 2 qubits and 4 optical modes. The target for the n-qubit
phase operations is always the final qubit; the conditioning configuration of the control qubits determines which
element in the qubit space receives the phase. The addition of Hadamard operations on the final qubit allows the
mapping of 1/2 reflectivity beamsplitters, and therefore MZIs, that operate between pairs of optical modes that
differ in labelling only by the final bit. The further addition of n-qubit NOT gates allows MZIs to be mapped
from pairs of optical modes that may differ in labelling by more than one bit. Any subset of the MZI operations
may be implemented on qubits by simply omitting controlled phases where appropriate.

While not designed to be optimal, this one-to-one mapping between n-qubit phase gates and optical MZIs
illustrates one way in which the distributions expressed in figure 2(c) may be used to directly implement a HRU
on qubits.

We have presented a recipe to directly generate HRUs in linear optics with a proof that is straightforward in
comparison to previous works [6, 23]. Experimental conformation of these results can make use of tomography
that does not require further optical circuitry [30]. The formula in its general form is applicable to boson
sampling where Haar unitaries are required, and the extension to systems of qubits invites wider applications.
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Figure 5. Mapping a linear optical circuit to a unitary on qubits. An empty or solid circle indicates that the operation is conditional on
the ‘0’ or ‘1’ state of the control qubit, respectively. (a) A 2-qubit and 4 optical mode example. (b)—(d) the elementary operations for a 3
qubit (8 optical mode) unitary. (b) Phase shifts on single elements in the qubit space result from a judicious choice of conditions for
the control qubits. (c) The addition of Hadamard gates allows beamsplitter operations to be implemented on elements in the qubit
space that differ only in the state of the final qubit. (d) The further addition of n-qubit-NOT gates allows the mapping of beamsplitters
for elements that may differ in the state of more than one qubit.
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Appendix. Converting a lower Hessenberg matrix to alower triangular matrix

Weset Jf_ 1,0 = O0with column operations by subtracting column ¢; multiplied by an appropriate scalar:

]]Ek— 1)
R Sk } (A1)
Je—1k

The effect on all the other elements of ¢ is to remove the dependence on ry, which we can prove inductively.
Suppose that after k such operations, the upper k elements of ¢, have been set to zero and the remaining
elements have no dependence on r,for 0 < I < k. We can express the elements of ¢{©’ as:

i
Jh = Tit1 H Q—=r), izk
L0 T I=k+1

0, i<k

(A.2)

The base case is k = 0, where the expression in (14) corresponds to this general form. We now perform the
(k + 1)th operation on all non-zerorows (i.e. i > k + 1):

7
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(k)
k+1 k k,0
]i(,0+ ) = ]1‘()0) - ]i,k+1
Jik+1
i
=ra [[ A=m)
I=k+1

k .
n rk+1Hl:k+1 A=) nny li[ a-r
0 Hf:] a-—r) @=re) 5
i

i
T 1;
=rna ] (1—r1)+1k+$ [T a-m

I=k+1 (1 = re41) 1241

i
=ra(l—ny) [[ A=mn)
I=k+2
i
+ fiqireer [[ A —1)
I=k+2

i
=rip (I =g+ [[ A=)
I=k+2
i
=ra [[ A —r).

I=k+2

We recover the expression in (A.2), thus proving the result. After n — 1 iterations, we find that ],;1_’11)0 =rn=1,
recalling that r,, = 1was avariable introduced for convenience.
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