97 research outputs found

    Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration

    Get PDF
    Vascular tissue engineering is an area of regenerative medicine that attempts to create functional replacement tissue for defective segments of the vascular network. One approach to vascular tissue engineering utilizes seeding of biodegradable tubular scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold remodeling and prevent thrombosis through paracrine signaling to endogenous cells. Stem cells have received an abundance of attention in recent literature regarding the mechanism of their paracrine therapeutic effect. However, very little of this mechanistic research has been performed under the aegis of vascular tissue engineering. Therefore, the scope of this review includes the current state of TEVGs generated using the incorporation of stem cells in biodegradable scaffolds and potential cell-free directions for TEVGs based on stem cell secreted products. The current generation of stem cell-seeded vascular scaffolds are based on the premise that cells should be obtained from an autologous source. However, the reduced regenerative capacity of stem cells from certain patient groups limits the therapeutic potential of an autologous approach. This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted products as therapeutic bases for TEVGs. The role of stem cell derived products, particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due to their potential use as a cell-free therapeutic base. EVs offer many benefits as a therapeutic base for functionalizing vascular scaffolds such as cell specific targeting, physiological delivery of cargo to target cells, reduced immunogenicity, and stability under physiological conditions. However, a number of points must be addressed prior to the effective translation of TEVG technologies that incorporate stem cell derived EVs such as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with EVs, and establishing the therapeutic benefit of this combination treatment

    The effect of bone microstructure on the initiation and growth of microcracks.

    Get PDF
    Osteonal bone is often compared to a composite material and to metals as discontinuities within the material may provide sites of stress concentration for crack initiation and serve as barriers to crack growth. However, little experimental data exist to back up these hypotheses. Fluorescent chelating agents were applied at specific intervals to bone specimens fatigue tested in cyclic compression at a stress range of 80 MPa. The failed specimens were sectioned and labelled microcracks identified using UV epifluorescence microscopy. Microcrack lengths were measured and their relationship to cement lines surrounding secondary osteons recorded. Microcrack length at the time of encountering a cement line was also measured. Microcracks of less than 100mum stopped growing when they encountered a cement line. Microcracks of greater than 100mum in length continued to grow after encountering a cement line surrounding an osteon. Only microcracks greater than 300mum in length were capable of penetrating osteons and these microcracks were the only ones which were observed to cause failure in the specimen. These experimental data support the hypothesis that secondary osteons act as barriers to crack propagation in compact bone. However, it shows that this microstructural barrier effect is dependent on the crack length at the time of encountering an osteon. For the vast majority of cracks, osteons act as barriers to growth but for the minority of cracks that are long enough and do break through the cement line, an osteon may actually act as a weakness in the bone and facilitate crack propagation

    Scaffold-based delivery of nucleic acid therapeutics for enhanced bone and cartilage repair

    Get PDF
    Recent advances in tissue engineering have made progress toward the development of biomaterials capable of the delivery of growth factors, such as bone morphogenetic proteins, in order to promote enhanced tissue repair. However, controlling the release of these growth factors on demand and within the desired localized area is a significant challenge and the associated high costs and side effects of uncontrolled delivery have proven increasingly problematic in clinical orthopedics. Gene therapy may be a valuable tool to avoid the limitations of local delivery of growth factors. Following a series of setbacks in the 1990s, the field of gene therapy is now seeing improvements in safety and efficacy resulting in substantial clinical progress and a resurgence in confidence. Biomaterial scaffold‐mediated gene therapy provides a template for cell infiltration and tissue formation while promoting transfection of cells to engineer therapeutic proteins in a sustained but ultimately transient fashion. Additionally, scaffold‐mediated delivery of RNA‐based therapeutics can silence specific genes associated with orthopedic pathological states. This review will provide an overview of the current state‐of‐the‐art in the field of gene‐activated scaffolds and their use within orthopedic tissue engineering applications

    Highly versatile cell-penetrating peptide loaded scaffold for efficient and localised gene delivery to multiple cell types: From development to application in tissue engineering

    Get PDF
    Gene therapy has recently come of age with seven viral vector-based therapies gaining regulatory approval in recent years. In tissue engineering, non-viral vectors are preferred over viral vectors, however, lower transfection efficiencies and difficulties with delivery remain major limitations hampering clinical translation. This study describes the development of a novel multi-domain cell-penetrating peptide, GET, designed to enhance cell interaction and intracellular translocation of nucleic acids; combined with a series of porous collagen-based scaffolds with proven regenerative potential for different indications. GET was capable of transfecting cell types from all three germ layers, including stem cells, with an efficiency comparable to Lipofectamine® 3000, without inducing cytotoxicity. When implanted in vivo, GET gene-activated scaffolds allowed for host cell infiltration, transfection localized to the implantation site and sustained, but transient, changes in gene expression – demonstrating both the efficacy and safety of the approach. Finally, GET carrying osteogenic (pBMP-2) and angiogenic (pVEGF) genes were incorporated into collagen-hydroxyapatite scaffolds and with a single 2μg dose of therapeutic pDNA, induced complete repair of critical-sized bone defects within 4 weeks. GET represents an exciting development in gene therapy and by combining it with a scaffold-based delivery system offers tissue engineering solutions for a myriad of regenerative indications

    Staphylococcus aureus Protein A Binds to Osteoblasts and Triggers Signals That Weaken Bone in Osteomyelitis

    Get PDF
    Osteomyelitis is a debilitating infectious disease of the bone. It is predominantly caused by S. aureus and is associated with significant morbidity and mortality. It is characterised by weakened bones associated with progressive bone loss. Currently the mechanism through which either bone loss or bone destruction occurs in osteomyelitis patients is poorly understood. We describe here for the first time that the major virulence factor of S. aureus, protein A (SpA) binds directly to osteoblasts. This interaction prevents proliferation, induces apoptosis and inhibits mineralisation of cultured osteoblasts. Infected osteoblasts also increase the expression of RANKL, a key protein involved in initiating bone resorption. None of these effects was seen in a mutant of S. aureus lacking SpA. Complementing the SpA-defective mutant with a plasmid expressing spa or using purified protein A resulted in attachment to osteoblasts, inhibited proliferation and induced apoptosis to a similar extent as wildtype S. aureus. These events demonstrate mechanisms through which loss of bone formation and bone weakening may occur in osteomyelitis patients. This new information may pave the way for the development of new and improved therapeutic agents to treat this disease

    Constraining the Evolution of Zz Ceti

    Get PDF
    We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt ≤ (5:5 ± 1:9) x 10-15 s s-1, after correcting for proper motion. Our results are consistent with previous Ṗ values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is ⎸P / Ṗ ⎸=⎹≥ 1:2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions
    corecore