5,457 research outputs found
Early multi-wavelength emission from Gamma-ray Bursts: from Gamma-ray to X-ray
The study of the early high-energy emission from both long and short
Gamma-ray bursts has been revolutionized by the Swift mission. The rapid
response of Swift shows that the non-thermal X-ray emission transitions
smoothly from the prompt phase into a decaying phase whatever the details of
the light curve. The decay is often categorized by a steep-to-shallow
transition suggesting that the prompt emission and the afterglow are two
distinct emission components. In those GRBs with an initially steeply-decaying
X-ray light curve we are probably seeing off-axis emission due to termination
of intense central engine activity. This phase is usually followed, within the
first hour, by a shallow decay, giving the appearance of a late emission hump.
The late emission hump can last for up to a day, and hence, although faint, is
energetically very significant. The energy emitted during the late emission
hump is very likely due to the forward shock being constantly refreshed by
either late central engine activity or less relativistic material emitted
during the prompt phase. In other GRBs the early X-ray emission decays
gradually following the prompt emission with no evidence for early temporal
breaks, and in these bursts the emission may be dominated by classical
afterglow emission from the external shock as the relativistic jet is slowed by
interaction with the surrounding circum-burst medium. At least half of the GRBs
observed by Swift also show erratic X-ray flaring behaviour, usually within the
first few hours. The properties of the X-ray flares suggest that they are due
to central engine activity. Overall, the observed wide variety of early
high-energy phenomena pose a major challenge to GRB models.Comment: Accepted for publication in the New Journal of Physics focus issue on
Gamma Ray Burst
An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed
Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population
The Microchannel X-ray Telescope for the Gamma-Ray Burst mission SVOM
We present the Microchannel X-ray Telescope, a new light and compact
focussing telescope that will be flying on the Sino-French SVOM mission
dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling
of square pore micro-channel plates with a low noise pnCCD. MXT will provide an
effective area of about 50 cmsq, and its point spread function is expected to
be better than 3.7 arc min (FWHM) on axis. The estimated sensitivity is
adequate to detect all the afterglows of the SVOM GRBs, and to localize them to
better then 60 arc sec after five minutes of observation.Comment: 12 pages, 8 figures, to be published in SPIE Astronomical Telescopes
+ Instrumentation, Montreal, June 201
Nonuniversal scaling behavior of Barkhausen noise
We simulate Barkhausen avalanches on fractal clusters in a two-dimensional
diluted Ising ferromagnet with an effective Gaussian random field. We vary the
concentration of defect sites and find a scaling region for moderate
disorder, where the distribution of avalanche sizes has the form . The exponents for size
and for length distribution, and the fractal dimension of
avalanches satisfy the scaling relation .
For fixed disorder the exponents vary with driving rate in agreement with
experiments on amorphous Si-Fe alloys.Comment: 5 pages, Latex, 4 PostScript figures include
From Bare Metal Powders to Colloidally Stable TCO Dispersions and Transparent Nanoporous Conducting Metal Oxide Thin Films
Cataloged from PDF version of article.A simple, green, robust, widely applicable, multi-gram and cost-effective 'one-pot' synthesis of aqueous dispersions of colloidally stable 3-6 nm TCO NPs using bare metal powder precursors is described, and their utilization for making TCO high surface area nanoporous films is also demonstrated, which speaks well for their usage in a wide range of possible processes and devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234
We present the analysis of a total of 177h of high-quality optical
time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC
20058-5234. The bulk of the observations (135h) were obtained during a WET
campaign (XCOV15) in July 1997 that featured coordinated observing from 4
southern observatory sites over an 8-day period. The remaining data (42h) were
obtained in June 2004 at Mt John Observatory in NZ over a one-week observing
period. This work significantly extends the discovery observations of this
low-amplitude (few percent) pulsator by increasing the number of detected
frequencies from 8 to 18, and employs a simulation procedure to confirm the
reality of these frequencies to a high level of significance (1 in 1000). The
nature of the observed pulsation spectrum precludes identification of unique
pulsation mode properties using any clearly discernable trends. However, we
have used a global modelling procedure employing genetic algorithm techniques
to identify the n, l values of 8 pulsation modes, and thereby obtain
asteroseismic measurements of several model parameters, including the stellar
mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those
derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We
also present persuasive evidence from apparent rotational mode splitting for
two of the modes that indicates this compact object is a relatively rapid
rotator with a period of 2h. In direct analogy with the corresponding
properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude
pulsation behaviour of EC 20058 is entirely consistent with its inferred
effective temperature, which indicates it is close to the blue edge of the DBV
instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte
The Microchannel X-ray Telescope on Board the SVOM Satellite
We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about
1{\deg}) telescope that will be flying on the Sino-French SVOM mission
dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is
based on square micro pore optics (MPOs), coupled with a low noise CCD. The
optics are based on a "Lobster Eye" design, while the CCD is a focal plane
detector similar to the type developed for the seven eROSITA telescopes. MXT is
a compact and light (<35 kg) telescope with a 1 m focal length, and it will
provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is
expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy
of the afterglows of the SVOM GRBs to better than 1 arc min (90\% c.l. with no
systematics) provided MXT data are collected within 5 minutes after the
trigger. The MXT sensitivity will be adequate to detect the afterglows for
almost all the SVOM GRBs as well as to perform observations of non-GRB
astrophysical objects. These performances are fully adapted to the SVOM science
goals, and prove that small and light telescopes can be used for future small
X-ray missions.Comment: 6 pages, 6 figures, proceedings of the conference "Swift: 10 years of
Discovery", Rome, December 2-5, 2014. To be published by Po
Late-Time X-ray Flares during GRB Afterglows: Extended Internal Engine Activity
Observations of gamma ray bursts (GRBs) with Swift produced the initially
surprising result that many bursts have large X-ray flares superimposed on the
underlying afterglow. These flares were sometimes intense, rapid, and late
relative to the nominal prompt phase. The most intense of these flares was
observed by XRT with a flux >500 the afterglow. This burst then surprised
observers by flaring again after >10000 s. The intense flare can be most easily
understood within the context of the standard fireball model, if the internal
engine that powers the prompt GRB emission is still active at late times.
Recent observations indicate that X-ray flares are detected in ~1/3 of XRT
detected afterglows. By studying the properties of the varieties of flares
(such as rise/fall time, onset time, spectral variability, etc.) and relating
them to overall burst properties, models of flare production and the GRB
internal engine can be constrained.Comment: To appear in the proceedings of the 16th Annual October Astrophysics
Conference in Maryland "Gamma Ray Bursts in the Swift Era
- …