295 research outputs found

    Non-invasive Predictors of Human Cortical Bone Mechanical Properties: T2-Discriminated 1H NMR Compared with High Resolution X-ray

    Get PDF
    Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, 1H nuclear magnetic resonance (NMR) and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that 1H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These 1H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk

    Infection prevention and control interventions in the first outbreak of methicillin-resistant Staphylococcus aureus infections in an equine hospital in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first outbreak of methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infection in horses in Sweden occurred in 2008 at the University Animal Hospital and highlighted the need for improved infection prevention and control. The present study describes interventions and infection prevention control in an equine hospital setting July 2008 - April 2010.</p> <p>Method</p> <p>This descriptive study of interventions is based on examination of policy documents, medical records, notes from meetings and cost estimates. MRSA cases were identified through clinical sampling and telephone enquiries about horses post-surgery. Prospective sampling in the hospital environment with culture for MRSA and genotyping of isolates by <it>spa</it>-typing and pulsed-field gel electrophoresis (PFGE) were performed.</p> <p>Results</p> <p>Interventions focused on interruption of indirect contact spread of MRSA between horses via staff and equipment and included: Temporary suspension of elective surgery; and identification and isolation of MRSA-infected horses; collaboration was initiated between authorities in animal and human public health, human medicine infection control and the veterinary hospital; extensive cleaning and disinfection was performed; basic hygiene and cleaning policies, staff training, equipment modification and interior renovation were implemented over seven months.</p> <p>Ten (11%) of 92 surfaces sampled between July 2008 and April 2010 tested positive for MRSA <it>spa</it>-type 011, seven of which were from the first of nine sampling occasions. PFGE typing showed the isolates to be the outbreak strain (9 of 10) or a closely related strain. Two new cases of MRSA infection occurred 14 and 19 months later, but had no proven connections to the outbreak cases.</p> <p>Conclusions</p> <p>Collaboration between relevant authorities and the veterinary hospital and formation of an infection control committee with an executive working group were required to move the intervention process forward. Support from hospital management and the dedication of staff were essential for the development and implementation of new, improved routines. Demonstration of the outbreak strain in the environment was useful for interventions such as improvement of cleaning routines and interior design, and increased compliance with basic hygienic precautions. The interventions led to a reduction in MRSA-positive samples and the outbreak was considered curbed as no new cases occurred for over a year.</p

    Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique

    Get PDF
    BACKGROUND: One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface. METHODS: This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by PVD layering with SiO(x )to avoid that crack formation in the bone cement. A biomechanical model for vibration fatigue test was done to simulate the physiological and biomechanical conditions of the human knee joint and to prove excessive crack formation. RESULTS: It was found that coated tibial components showed a highly significant reduction of cement cracking near the interface metal/bone cement (p < 0.01) and a significant reduction of gap formation in the interface metal-to-bone cement (p < 0.05). CONCLUSION: Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis interface metal/bone cement. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the interfaces metal/bone cement/bone. With surface coating of the tibial component it should become possible that surface cemented TKAs reveal similar loosening rates as TKAs both surface and stem cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in case of revision and stress shielding for better bone health

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Characterization of bone repair in rat femur after treatment with calcium phosphate cement and autogenous bone graft

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, the biocompatibility, stability and osteotransductivity of a new cement based on alpha-tricalcium phosphate (alpha-TCP) were investigated in a bone repair model using a rat model.</p> <p>Methods</p> <p>The potential of alpha-TCP on bone repair was compared to autogenous bone grafting, and unfilled cavities were used as negative control. Surgical cavities were prepared and designated as test (T), implanted with alpha-TCP blocks; negative control (C - ), unfilled; and positive control (C + ), implanted with autogenous bone graft. Results were analyzed on postoperative days three, seven, 14, 21 and 60.</p> <p>Results</p> <p>The histological analyses showed the following results. Postoperative day three: presence of inflammatory infiltrate, erythrocytes and proliferating fibroblasts in T, C - and C + samples. Day seven: extensive bone neoformation in groups T and C + , and beginning of alpha-TCP resorption by phagocytic cells. Days 14 and 21: osteoblastic activity in the three types of cavities. Day 60: In all samples, neoformed bone similar to surrounding bone. Moderate interruption on the ostectomized cortical bone.</p> <p>Conclusions</p> <p>Bone neoformation is seen seven days after implantation of alpha-TCP and autogenous bone. Comparison of C - with T and C + samples showed that repair is faster in implanted cavities; on day 60, control groups presented almost complete bone repair. Alpha-TCP cement presents biocompatibility and osteotransductivity, besides stability, but 60 days after surgery the cavities were not closed.</p

    Using the net benefit regression framework to construct cost-effectiveness acceptability curves: an example using data from a trial of external loop recorders versus Holter monitoring for ambulatory monitoring of "community acquired" syncope

    Get PDF
    BACKGROUND: Cost-effectiveness acceptability curves (CEACs) describe the probability that a new treatment or intervention is cost-effective. The net benefit regression framework (NBRF) allows cost-effectiveness analysis to be done in a simple regression framework. The objective of the paper is to illustrate how net benefit regression can be used to construct a CEAC. METHODS: One hundred patients referred for ambulatory monitoring with syncope or presyncope were randomized to a one-month external loop recorder (n = 49) or 48-hour Holter monitor (n = 51). The primary endpoint was symptom-rhythm correlation during monitoring. Direct costs were calculated based on the 2003 Ontario Health Insurance Plan (OHIP) fee schedule combined with hospital case costing of labour, materials, service and overhead costs for diagnostic testing and related equipment. RESULTS: In the loop recorder group, 63.27% of patients (31/49) had symptom recurrence and successful activation, compared to 23.53% in the Holter group (12/51). The cost in US dollars for loop recording was 648.50and648.50 and 212.92 for Holter monitoring. The incremental cost-effectiveness ratio (ICER) of the loop recorder was $1,096 per extra successful diagnosis. The probability that the loop recorder was cost-effective compared to the Holter monitor was estimated using net benefit regression and plotted on a CEAC. In a sensitivity analysis, bootstrapping was used to examine the effect of distributional assumptions. CONCLUSION: The NBRF is straightforward to use and interpret. The resulting uncertainty surrounding the regression coefficient relates to the CEAC. When the link from the regression's p-value to the probability of cost-effectiveness is tentative, bootstrapping may be used

    A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation

    Get PDF
    This phase I study was designed to examine the maximum tolerated dose (MTD), the dose-limiting toxicities (DLTs), the recommended dose (RD) for phase II, and the pharmacokinetics of NK105, a new polymeric micelle carrier system for paclitaxel (PTX). NK105 was administered as a 1-h intravenous infusion every 3 weeks, without antiallergic premedication. The starting dose was 10 mg m−2, and the dose was escalated according to the accelerated titration method. Nineteen patients were recruited. The tumour types treated included pancreatic (n=11), bile duct (n=5), gastric (n=2), and colonic (n=1) cancers. Neutropenia was the most common haematological toxicity. A grade 3 fever developed in one patient given 180 mg m−2. No other grades 3 or 4 nonhaematological toxicities, including neuropathy, was observed during the entire study period. DLTs occurred in two patients given 180 mg m−2 (grade 4 neutropenia lasting for more than 5 days). Thus, this dose was designated as the MTD. Grade 2 hypersensitivity reactions developed in only one patient given 180 mg m−2. A partial response was observed in one patient with pancreatic cancer. The maximum concentration (Cmax) and area under the concentration (AUC) of NK105 were dose dependent. The plasma AUC of NK105 at 150 mg m−2 was approximately 15-fold higher than that of the conventional PTX formulation. NK105 was well tolerated, and the RD for the phase II study was determined to be 150 mg m−2 every 3 weeks. The results of this phase I study warrant further clinical evaluation

    Unique Properties of Eukaryote-Type Actin and Profilin Horizontally Transferred to Cyanobacteria

    Get PDF
    A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity
    corecore