26 research outputs found

    Vocal behaviour and feeding ecology of killer whales Orcinus orca around Shetland, UK

    Get PDF
    Killer whales Orcinus orca are sighted regularly off Shetland, UK, but little is known about their numbers, diet and population identity. We aimed to relate vocal behaviour to diet of killer whales around Shetland in order to investigate population structure and differences in feeding strategies. Fieldwork was conducted in the summers of 2008 and 2009. We located killer whales through a sightings network and shore-based scans and collected photo-ID data, behavioural information, feeding data and acoustic recordings from a small boat. The majority of encounters (n = 14) were of small groups (1 to 15 individuals) travelling close to shore and feeding on marine mammals. Two encounters were with large groups (20+ individuals) feeding on herring Clupea harengus farther offshore. Seal-hunting groups vocalised rarely, producing pulsed calls, echolocation clicks and whistles almost exclusively when surface-active or milling after a kill. Herring-eating groups were largely silent during one encounter, but very vocal during the other. Analysis of pulsed calls identified 6 stereotyped call types for seal-hunting groups and 7 for herring-eating groups. No call types were shared between both kinds of groups. The vocal behaviour of seal-hunting groups showed striking parallels to that of Pacific marine mammal specialists and presumably evolved to decrease detection by acoustically sensitive prey. One call type produced by Shetland herring-eating killer whales matched a vocalisation that a previous study had described from Iceland and identified as a possible herding call that may function to concentrate herring during feeding. These findings point to behavioural and dietary specialisation among Shetland killer whales, which should be taken into account when making management decisions affecting these animals

    Seasonal changes in diel haul‐out patterns of a lacustrine ringed seal (Pusa hispida saimensis)

    Get PDF
    Seasonal changes in diel haul-out patterns of the lacustrine Saimaa ringed seal (Pusa hispida saimensis) were studied using a combination of satellite telemetry and camera traps during 2007–2015. We found the haul-out activity patterns to vary seasonally. Our results show that during the ice-covered winter period before the seals start their annual molt, the peak in haul-out generally occurs at midnight. Similarly, during the postmolt season of summer and autumn when the lake is free of ice, the haul-out is concentrated in the early hours of the morning. In contrast, over the spring molting period, Saimaa ringed seals tend to haul out around the clock. The spring molt is also the only period when a slight difference in haul-out behavior between the sexes is observed, with females having a haul-out peak at nighttime while the males have a less visible diel pattern. According to our results, the diel haul-out patterns of Saimaa ringed seals are similar to the ones of marine ringed seals. Gathering information on haul-out activity is important in order to safeguard the natural patterns of Saimaa ringed seals in areas that are prone to disturbance from human activities

    Central place foraging drives niche partitioning in seabirds

    Get PDF
    When species coexist, it is expected that they will reduce competition through niche partitioning or spatial segregation. We investigated the importance of niche partitioning versus spatial segregation across a seabird community where food and foraging constraints vary seasonally. Spatial clustering of seabird density in the western Irish Sea occurred in both seasons, with hotspots of seabird occurrence significantly higher in summer (Moran's I: 0.29) than winter (Moran's I: 0.19). A positive correlation between seabird density and feeding guild richness suggested a role for niche partitioning in reducing competition. This correlation was significantly stronger in summer than winter (Z-test, p < 0.05), suggesting that when foraging range is constrained during the breeding season, interspecific competition is reduced through increased niche partitioning. Reduced spatial clustering and weaker correlations between density and feeding guild richness in winter suggests that spatial segregation plays a greater role in reducing interspecific competition outside the breeding season. This study demonstrates the relative importance of niche partitioning and spatial segregation, highlighting niche partitioning as a response to constraints on foraging range during the breeding season

    Fine-scale population structure and connectivity of bottlenose dolphins, Tursiops truncatus, in European waters and implications for conservation

    Get PDF
    Funding: Fyssen post-doctoral fellowship, Fondation Total, a bridge funding from the School of Biology of the University of St Andrews and People’s Trust for Endangered Species (ML).1. Protecting species often involves the designation of protected areas, wherein suitable management strategies are applied either at the taxon or ecosystem level. Special Areas of Conservation (SACs) have been created in European waters under the Habitats Directive to protect bottlenose dolphins, Tursiops truncatus, which forms two ecotypes, pelagic and coastal. 2. The SACs have been designated in coastal waters based on photo‐identification studies that have indicated that bottlenose dolphins have relatively high site fidelity. However, individuals can carry out long‐distance movements, which suggests potential for demographic connectivity between the SACs as well as with other areas. 3. Connectivity can be studied using genetic markers. Previous studies on the species in this area used different sets of genetic markers and therefore inference on the fine‐scale population structure and demographic connectivity has not yet been made at a large scale. A common set of microsatellite markers was used in this study to provide the first comprehensive estimate of genetic structure of bottlenose dolphins in European Atlantic waters. 4. As in previous studies, a high level of genetic differentiation was found between coastal and pelagic populations. Genetic structure was defined at an unprecedented fine‐scale level for coastal dolphins, leading to identification of five distinct coastal populations inhabiting the following areas: Shannon estuary, west coast of Ireland, English Channel, coastal Galicia, east coast of Scotland and Wales/west Scotland. Demographic connectivity was very low among most populations with <10% migration rate, suggesting no demographic coupling among them. Each local population should therefore be monitored separately. 5. The results of this study have the potential to be used to identify management units for bottlenose dolphins in this region and thus offer a significant contribution to the conservation of the species in European Atlantic waters. Future studies should prioritize obtaining biopsies from free‐living dolphins from areas where only samples from stranded animals were available, i.e. Wales, west Scotland and Galicia, in order to reduce uncertainty caused by sample origin doubt, as well as from areas not included in this study (e.g. Iroise Sea, France). Furthermore, future management strategies should include monitoring local population dynamics and could also consider other options, such as population viability analysis or the incorporation of genetic data with ecological data (e.g. stable isotope analysis) in the designation of management units.PostprintPeer reviewe

    Postglacial Colonization of Northern Coastal Habitat by Bottlenose Dolphins: A Marine Leading-Edge Expansion?

    Get PDF
    Oscillations in the Earth’s temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900–26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations
    corecore