47 research outputs found

    Evolution of Labeo victorianus predates the Pleistocene desiccation of Lake Victoria: evidence from mitochondrial DNA sequence variation

    Get PDF
    Geological data show that Lake Victoria dried out some 15 000 years ago. These data suggest that the entire faunal diversity within the lake has evolved since this time. However, mitochondrial DNA sequence diversity in the endemic cyprinid fish, Labeo victorianus, was high (24 haplotypes in 38 individuals; percentage sequence divergence of 0.74%), suggesting that the evolution of this species predates this Late Pleistocene climatological event. This finding is consistent with what has been reported earlier for cichlid fishes in the lake

    Population morphological variation of the Nile perch (Lates niloticus, L. 1758), of East African Lakes and their associated waters

    Get PDF
    In this study an attempt was made to determine whether there are morphological variations associated with the different geographical populations of the Nile perch of East Africa. Analyses of the levels of morphological differentiation based on morphological characterisation and variation were carried out. The study was based on 864 Nile perch sampled from 25 different locations from different Lakes in the region and 10 morphological characters. Also determined were the length – weight relationships and condition factor of sampled Nile perch. The log transformed data of all sampled Nile perch were subjected to multivariate analysis, using ‘PAST’ statistical software. Findings showed that peduncle form and size, of all the variables used in this study, contributed most to the variance. The analysis clustered the Nile perch into two groups, which were found to be as characterised by earlier morphological description of this species and most probably are representatives of two distinct taxa of Nile perch in the East African waters. The LWRs and condition factor conformed to the fish isometric growth formula W = aLb with the value for the pooled data being W = 0.6664L0.3264. The existence of 2 morphs agrees with earlier taxonomists (Harrison, 1991; Ribbink, 1987; Bwathondi, 1985; Holden, 1967) who proposed that Nile perch exists in two populations – a bigger shallow water dwelling morph and a smaller deep open water dwelling morph. This calls for identification and mapping of the 2 populations in the different waters of East Africa that may require application of different management regimes.Keywords: Nile perch, taxa, morphological variation, East Africa

    Evolution of Labeo victorianus predates the Pleistocene desiccation of Lake Victoria: evidence from mitochondrial DNA sequence variation

    Get PDF
    Geological data show that Lake Victoria dried out some 15 000 years ago. These data suggest that the entire faunal diversity within the lake has evolved since this time. However, mitochondrial DNA sequence diversity in the endemic cyprinid fish, Labeo victorianus, was high (24 haplotypes in 38 individuals; percentage sequence divergence of 0.74%), suggesting that the evolution of this species predates this Late Pleistocene climatological event. This finding is consistent with what has been reported earlier for cichlid fishes in the lake

    Successful artificial insemination in the Asian elephant (Elephas maximus) using chilled and frozen-thawed semen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artificial insemination (AI) using frozen-thawed semen is well established and routinely used for breeding in various mammalian species. However, there is no report of the birth of elephant calves following AI with frozen-thawed semen. The objective of the present study was to investigate the fertilizing ability of chilled and frozen-thawed semen in the Asian elephant following artificial insemination (AI).</p> <p>Methods</p> <p>Semen samples were collected by from 8 bulls (age range, 12-to 42-years) by manual stimulation. Semen with high quality were either cooled to 4°C or frozen in liquid nitrogen (-196°C) before being used for AI. Blood samples collected from ten elephant females (age range, 12-to 52-years) were assessed for estrus cycle and elephants with normal cycling were used for AI. Artificial insemination series were conducted during 2003 to 2008; 55 and 2 AI trials were conducted using frozen-thawed and chilled semen, respectively. Pregnancy was detected using transrectal ultrasonography and serum progestagen measurement.</p> <p>Results</p> <p>One female (Khod) inseminated with chilled semen became pregnant and gave birth in 2007. The gestation length was 663 days and the sex of the elephant calf was male. One female (Sao) inseminated with frozen-thawed semen showed signs of pregnancy by increasing progestagen levels and a fetus was observed for 5 months by transrectal ultrasonography.</p> <p>Conclusion</p> <p>This is the first report showing pregnancy following AI with frozen-thawed semen in the Asian elephant. Successful AI in the Asian elephant using either chilled or frozen-thawed semen is a stepping stone towards applying this technology for genetic improvement of the elephant population.</p

    The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics

    Get PDF
    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently

    Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    Get PDF
    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa

    Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    Get PDF
    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today

    The terrain of urbanisation process and policy frameworks: A critical analysis of the Kampala experience

    Get PDF
    Kampala is urbanising in an unplanned manner, but without a clear picture of the underlying dynamics. The city is characterised by lack of proper zoning of economic activities and construction of physical infrastructure without regard to subsequent spatial quality and environmental conservation. Consequently, there are sharp differences in residential standards where expensive housing and luxury flats co-exist with shanty towns and informal settlements, with about 60% of the city’s population living in unplanned informal settlements and often faced with challenges of unemployment. The unprecedented increase in the urban population in Kampala and the prospects for further increases in the near future have economic and social implications concerning employment, housing, education and health, among others. Understanding the nature of the dynamics of the growth or decline of cities like Kampala helps planners to support the processes that lead to harmonious urban development and to deal with the negative consequences of urban growth. This paper reflects the urbanisation dynamics explaining Kampala’s urbanisation process with the view to analysing the implications for an alternative urban policy framework. It argues that the conditions that have allowed the situation to exist have serious policy implications which require the need for an integrated policy framework that can be used to effectively prevent or halt Kampala’s unplanned urbanisation while promoting planned urbanisation. Induced by the migration and lack of information, understanding urban dynamics is crucial to the development of urban policies that can effectively ensure that further urban changes occur in a systematic and satisfactory manner. The current urban process in developing countries like Uganda is associated with poverty, environmental degradation and population demands that outstrip service capacity
    corecore