639 research outputs found
A comparison of acyltransferase activities in vitro with the distribution of fatty acids in lecithins and triglycerides in vivo
The location and configuration of a double bond in a fatty acid influences the rate of its acyltransferase‐catalyzed esterification to form lecithin and its distribution in vivo between the primary and secondary positions of triglycerides and lecithins.Saturated acids of shorter chain length are transferred at rates similar to the long chain unsaturated acids.The positional distributions of acids in the diglyceride units of liver triglycerides appear to be similar to that found in the lecithins.Acyltransferase activities measured in vitro have a considerable predictive value in terms of the ultimate distribution of fatty acids in glycerolipids in vivo.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141483/1/lipd0224.pd
Proton and Helium Spectra from the CREAM-III Flight
Primary cosmic-ray elemental spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The
third CREAM payload (CREAM-III) flew for 29 days during the 2007-2008 Antarctic
season. Energies of incident particles above 1 TeV are measured with a
calorimeter. Individual elements are clearly separated with a charge resolution
of ~0.12 e (in charge units) and ~0.14 e for protons and helium nuclei,
respectively, using two layers of silicon charge detectors. The measured proton
and helium energy spectra at the top of the atmosphere are harder than other
existing measurements at a few tens of GeV. The relative abundance of protons
to helium nuclei is 9.53+-0.03 for the range of 1 TeV/n to 63 TeV/n. The ratio
is considerably smaller than other measurements at a few tens of GeV/n. The
spectra become softer above ~20 TeV. However, our statistical uncertainties are
large at these energies and more data are needed
Direct evidence of dust growth in L183 from MIR light scattering
Theoretical arguments suggest that dust grains should grow in the dense cold
parts of molecular clouds. Evidence of larger grains has so far been gathered
in near/mid infrared extinction and millimeter observations. Interpreting the
data is, however, aggravated by the complex interplay of density and dust
properties (as well as temperature for thermal emission). We present new
Spitzer data of L183 in bands that are sensitive and insensitive to PAHs. The
visual extinction AV map derived in a former paper was fitted by a series of 3D
Gaussian distributions. For different dust models, we calculate the scattered
MIR radiation images of structures that agree agree with the AV map and compare
them to the Spitzer data. The Spitzer data of L183 show emission in the 3.6 and
4.5 micron bands, while the 5.8 micron band shows slight absorption. The
emission layer of stochastically heated particles should coincide with the
layer of strongest scattering of optical interstellar radiation, which is seen
as an outer surface on I band images different from the emission region seen in
the Spitzer images. Moreover, PAH emission is expected to strongly increase
from 4.5 to 5.8 micron, which is not seen. Hence, we interpret this emission to
be MIR cloudshine. Scattered light modeling when assuming interstellar medium
dust grains without growth does not reproduce flux measurable by Spitzer. In
contrast, models with grains growing with density yield images with a flux and
pattern comparable to the Spitzer images in the bands 3.6, 4.5, and 8.0 micron.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
The Energy Spectra and Relative Abundances of Electrons and Positrons in the Galactic Cosmic Radiation
Observations of cosmic-ray electrons and positrons have been made with a new
balloon-borne detector, HEAT (the "High-Energy Antimatter Telescope"), first
flown in 1994 May from Fort Sumner, NM. We describe the instrumental approach
and the data analysis procedures, and we present results from this flight. The
measurement has provided a new determination of the individual energy spectra
of electrons and positrons from 5 GeV to about 50 GeV, and of the combined
"all-electron" intensity (e+ + e-) up to about 100 GeV. The single power-law
spectral indices for electrons and positrons are alpha = 3.09 +/- 0.08 and 3.3
+/- 0.2, respectively. We find that a contribution from primary sources to the
positron intensity in this energy region, if it exists, must be quite small.Comment: latex2e file, 30 pages, 15 figures, aas2pp4.sty and epsf.tex needed.
To appear in May 10, 1998 issue of Ap.
Importing genetically altered animals : ensuring quality
The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.Peer reviewe
The star-forming content of the W3 giant molecular cloud
We have surveyed a ~0.9-square-degree area of the W3 giant molecular cloud
and star-forming region in the 850-micron continuum, using the SCUBA bolometer
array on the James Clerk Maxwell Telescope. A complete sample of 316 dense
clumps was detected with a mass range from around 13 to 2500 Msun. Part of the
W3 GMC is subject to an interaction with the HII region and fast stellar winds
generated by the nearby W4 OB association. We find that the fraction of total
gas mass in dense, 850-micron traced structures is significantly altered by
this interaction, being around 5% to 13% in the undisturbed cloud but ~25 - 37%
in the feedback-affected region. The mass distribution in the detected clump
sample depends somewhat on assumptions of dust temperature and is not a simple,
single power law but contains significant structure at intermediate masses.
This structure is likely to be due to crowding of sources near or below the
spatial resolution of the observations. There is little evidence of any
difference between the index of the high-mass end of the clump mass function in
the compressed region and in the unaffected cloud. The consequences of these
results are discussed in terms of current models of triggered star formation.Comment: 13 pages, 8 figures, 1 table (full source table available on
request). Accepted for publication in Monthly Notices of the Royal
Astronomical Society (Main Journal
Elemental energy spectra of cosmic rays measured by CREAM-II
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei
from the second flight of the balloon-borne experiment CREAM (Cosmic Ray
Energetics And Mass). The instrument (CREAM-II) was comprised of detectors
based on different techniques (Cherenkov light, specific ionization in
scintillators and silicon sensors) to provide a redundant charge identification
and a thin ionization calorimeter capable of measuring the energy of cosmic
rays up to several hundreds of TeV. The data analysis is described and the
individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14
eV. The spectral shape looks nearly the same for all the primary elements and
can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen
absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan
- …